
Radboud University Nijmegen

Faculty of Science

Profiling mobile users: user identification
through analysis of LTE app traffic

Tracking users based on their installed apps

Thesis for MSc Computing Science, specialisation Cyber Security

Author:
David de Muinck Keizer

Supervisor:
Güneş Acar

Second reader:
Katharina Kohls

12 August 2023

Abstract

In this thesis, we examine the possibility of fingerprinting users, based on the apps that they have
installed on their phones. We research whether a set of apps will generate specific patterns in LTE
traffic, when users are not actively using their phone. We repeatedly alternate between different
sets of apps and record their passive LTE traffic in separate recordings. By extracting Autonomous
System (AS) numbers to create a vector for each recording, we can apply different distance metrics
on the vectors to determine the similarity between recordings. By applying this method on 60
minute recordings, we demonstrate that we can derive what set of apps was being used in 100%
of the recordings. When using a shorter recording time of only 5 minutes, we show that it is
still possible determine the correct set of apps in 98%-100% of the cases, by choosing the right
distance metric. This shows that an attacker with eavesdropping capabilities only requires a very
short period of time to be able to identify the user that has generated that LTE network traffic.
This constitutes a serious privacy infringement that requires the implementation of appropriate
countermeasures.

1

Contents
1 Introduction 4

2 Attack scenario 5

3 Related work 6

4 Preparing the setup 6
4.1 Installing a programmable SIM card . 6
4.2 Creating an LTE network . 7

4.2.1 Installing UHD . 7
4.2.2 Installing srsRAN . 8
4.2.3 Managing configuration files . 8

4.3 Running our LTE network . 9
4.4 Connecting the phone to our LTE network . 9
4.5 Simulate multiple users . 10

4.5.1 Preparing the phone . 10
4.5.2 Installing the apps . 11
4.5.3 Enabling and disabling apps . 11
4.5.4 Profiles . 12

4.6 Account for software or hardware crashes . 13
4.6.1 Detect a crash using the phone’s connection state 13
4.6.2 Recover the connection using Airplane mode . 14
4.6.3 Recover the connection by killing srsRAN . 14
4.6.4 Maintain the state before killing srsRAN . 15
4.6.5 Recover the connection by unplugging the SDR 15
4.6.6 Killing srsRAN vs. unplugging the SDR . 16
4.6.7 Automate the above . 16

4.7 Configuring the permissions of the apps . 16
4.8 Other things to account for . 17

5 The attack setup 18
5.1 Diagram of the setup . 18

5.1.1 Components . 18
5.1.2 Connections . 19
5.1.3 Script . 19

6 Attack analysis 19
6.1 The output data of our setup . 19
6.2 Extracting relevant data from the PCAP files . 20
6.3 Looking at data from multiple users simultaneously . 20
6.4 Extracting IP addresses from the PCAP files . 20

6.4.1 Altering dissectors in Wireshark . 20
6.4.2 Using TShark to extract IP addresses . 21

6.5 Converting IP addresses to AS numbers (ASNs) . 22
6.6 Convert ASNs to Boolean vectors . 23
6.7 Determining the similarity of two PCAP files . 24
6.8 Determining the profile of each PCAP . 25

6.8.1 General idea . 25
6.8.2 Example . 26
6.8.3 In our setup . 27
6.8.4 Using shorter traces . 27
6.8.5 Accelerating our analysis . 28

6.9 Overview of the entire analysis . 28

2

7 Results 30
7.1 File sizes of our recordings . 30
7.2 Using all 60 minutes of data from the PCAPs . 30
7.3 30 minutes of data . 31
7.4 20 minutes of data . 31
7.5 10 minutes of data . 32
7.6 5 minutes of data . 32
7.7 1 minute of data . 33

8 Discussion 33
8.1 Detection of our attack . 35
8.2 Countermeasures . 35
8.3 Other limitations and future research . 36
8.4 5G . 37

9 Conclusion 37

A Code samples for the research setup 42
A.1 Simplified apps installation script . 42
A.2 Code to verify phone connection status . 42
A.3 Code to end srsRAN . 43

B Setting the app permissions 45

C The 500 installed apps 47

D The profiles 57

E Results in table format 58

3

1 Introduction
Long-Term Evolution (LTE) or 4G is the fourth generation communication standard used in mobile
networks. It has many benefits compared to its predecessor (3G), including significantly higher band-
width, lower latency and the ability to connect more devices simultaneously. While the fifth-generation
(5G) has also already been actively being deployed for a couple of years now, LTE continues to play
an important role in the realm of mobile communication. Enrollment and adaption of 5G takes time
and is not economically feasible to deploy everywhere. As a result, numerous areas in the world are
still lacking 5G coverage and some regions might never gain access to this technology. But even in
areas where it is available, many older mobile devices are in use that still only support LTE. One of
the factors that refrain mobile users from making the switch to 5G in such areas, could be the fact
that the available 5G is still non-standalone 5G. This is a commonly used version of 5G where the
infrastructure still runs on LTE, which might cause mobile users to question the current benefits of
upgrading to 5G. In the Netherlands for example, as of the time of writing, it will still take a year
before standalone 5G will be available [46]. Even though 5G adaption increases, we will focus on LTE
in this research due to its important role in the telecommunications industry. Because of its extensive
adoption and widespread use as a standard, it is an attractive target for attackers. Examples of attacks
include downgrade attacks (e.g. [24, 15, 25]), denial of service attacks (e.g. [26, 27, 28, 29, 30, 31, 32]),
localization attacks (e.g. [8, 9, 10, 11, 12, 13]) and fingerprinting attacks. Examples of fingerprinting
attacks are website fingerprinting attacks [1] or app fingerprinting attacks [5]. In these attacks, the goal
is to derive what websites were visited, what apps were visited or even what actions were performed
inside those apps. This is achieved by prerecording great amounts of known network traffic and using
Machine Learning (ML) to train on that data to recognize patterns in that traffic. This allows an
attacker to classify any newly recorded traffic, by examining its similarity to the known patterns. In
this paper, we will perform a similar attack on traffic generated by different sets of apps. The average
user has around 40-80 apps installed on their phone [6, 7], which means that the set of apps they have
installed on their phone is most likely unique for each user.

Each time we record the LTE network traffic, we will create a vector based on the Autonomous
System (AS) numbers that we derive from the requested IP addresses in the traffic of that recording.
By comparing these vectors of different recordings, we can determine their similarity and uniqueness.
This allows us to investigate whether these vectors can serve as unique fingerprints, making it possible
to distinguish different users based on the patterns in their network traffic. In other words, the goal of
this research is to discover whether a unique set of apps also results in unique traffic patterns in their
LTE traffic. This opens up the possibility to distinguish users based on the apps they have installed
on their phones. Moreover, we will focus on achieving this using passive LTE traffic only. This means
that the users do not need to be actively using their phone for our attack to work. The ability to track
users this way, could be used for various purposes. For example, it allows to recognize the presence
of known criminals in a network and thus at a certain location, which could aid law enforcement and
intelligence agencies. It could also be used for user authentication purposes or targeted advertising.
However, it is important to realize that this information might also be used for the following purposes:

• Recognize the same user in multiple locations (tracking)

• Derive their interests from the obtained location data (profiling)
For example, if the same user is often detected at locations close to a festival, this reveals that
persons interest in festivals.

• Surveillance and monitoring (espionage)

Therefore, the successful deployment of this attack would also introduce serious privacy concerns that
imply the necessity of appropriate countermeasures. Motivated by its potential consequences and the
profound implications, the purpose of this research is to thoroughly investigate the feasibility of this
attack. In section 2, we will elaborate more on the attack scenario. Section 3 gives an overview
of related work and how our work differentiates from that. We will illustrate how to prepare the
environment that closely resembles the attacker scenario in section 4, after which we reveal our final
setup in section 5. In section 6, we provide an explanation on how to analyze the traffic that we will
record in our experiment. After having performed our experiment, we proceed with presenting the
results of our analysis in section 7 and our discussion in section 8. Finally, we conclude our research
in section 9.

4

2 Attack scenario
In our attack, we picture an attacker recording LTE traffic at multiple locations. Mobile network traffic
could be recorded using a passive sniffer. While this sounds like a feasible option, it would require a
way to decrypt the traffic, as the intercepted LTE traffic is encrypted. Therefore, a better way would
be to set up a false LTE base station. A false base station (FBS) - also referred to as a fake base station,
a rogue base station or a malicious eNodeB - is a device of an attacker that mimics a cell tower, with
the purpose of tricking mobile users into connecting to it. He can achieve this by sending a stronger
signal than any legitimate LTE cell tower (eNodeB). Once the users are connected, they will have an
encrypted connection with the fake base station. At the same time, the attacker pretends to be a
client to the legitimate base station, with whom it also establishes an encrypted connection. While the
connections of the fake base station with both the users and the legitimate base station are encrypted,
this Man-in-the-Middle (MitM) construction allows the attacker to act as an involved communication
party in both connections. The attacker can therefore decrypt both connections and look inside the
LTE packets. This could allow the attacker to recognize user specific patterns inside the decrypted
LTE packets and he might be able to use that information to identify connected users. By recording
traffic at multiple locations, an attacker could recognize the same patterns at those locations, allowing
him to become aware of a users whereabouts. Therefore, this allows the tracking of a user. The victims
that are successfully tracked in this attack do not need to have actively used their phone. Since we use
passive traffic for our attack, any user can be become a victim, even if they have been keeping their
phone in their pockets the entire time. Therefore, the users are unlikely to notice that they are being
tracked.

(a) In a coffee shop (b) At the mall

Figure 1: Recording traffic at multiple locations using a fake base station

In figure 1, the attacker is secretly recording LTE traffic in a coffee shop (1a) and later at the mall (1b).
For every user that inadvertently connects with his fake base station, he notices different patterns in
the traffic. However, after having compared the recordings of the coffee shop with those of the mall,
he also notices that the patterns are not different for every user. Two of the users that he recorded at
the mall turn out to have highly similar (or even identical) patterns to two users he recorded at the
coffee shop earlier. He then knows that those two users have been at both the coffee shop and the mall
when he was recording. When assigning labels to the discovered users, the attacker makes sure that
these two users have the same label at both locations. In this example, he labels them user D and user
F. Because the attacker has recognized users D and F at both locations, he knows when and where
they have been. He has successfully tracked these users.
In this simplified example, the attacker has only recorded LTE network traffic at two locations, which
has only resulted in discovering two people who coincidentally appeared at both locations at the same
time. In a real-world scenario, an attacker might record traffic across a substantially greater number of
locations simultaneously. While it may seem unlikely for a single person to use a large number of these
advanced devices for tracking purposes, there are other potential adversaries with greater access to
this type of equipment. For example, mobile network operators (MNOs), especially the ones that the
mobile user did not subscribe to. Recording traffic at a multitude of locations simultaneously will result

5

into significantly more matches, allowing the attacker to track many people. The ability to fingerprint
users and keeping track of their locations and interests this way is a great privacy infringement.

3 Related work
Numerous studies have examined the possibilities of exploiting flaws and performing attacks on LTE.
In the context of tracking users, there are several areas that overlap with our research. For example,
localization attacks in LTE (e.g. [8, 9, 10, 11, 12, 13]) attempt to discover the physical location of a
user that is connected to an LTE network. While the aim of these attacks is to determine the location
of a specific user, our goal is to recognize similar traffic patterns at multiple locations. This allows us
to identify the same users at different locations and thereby becoming aware of a users whereabouts.
Another way to identify the user at multiple locations, is using their IMSI. Similar to our attack, IMSI
catchers (e.g. [15, 16]) also make use of a rogue base station. Given the fact that our goal is similar
and we also have to setup a fake base station, it would make sense to think that the most rational
course of action is to also catch the user’s IMSI, instead of putting in more effort by proceeding to
analyze their traffic while essentially achieving the same. However, while a user’s IMSI is considered
a permanent identifier, it could still be subjected to change. In the Netherlands for example, 55% of
mobile phone users had a sim-only subscription [17] in 2022. This type of users will only have to swap
their sim card if they switch to a different network operator. Whenever they do that, their IMSI will
change, but their phone will keep generating the same traffic. This means that an IMSI catcher would
no longer be able to identify it as the same user, while an attacker using our method will. Moreover,
our attack does not require the attacker to actively prompt the victim to share its IMSI. Since the
attacker only needs to record the LTE traffic, he can still identify the users later, when analyzing the
recordings. This means that our attack can also be applied on previously recorded LTE traffic that
has been collected for other purposes.

Another area that overlaps with our research are fingerprinting attacks and traffic classification
techniques. For example, [2, 4] demonstrate the feasibility of classifying LTE traffic into categories.
It is also possible to apply LTE traffic classification to derive what website is being visited [1]. This
website fingerprinting attack on LTE works by focusing on various characteristics of the metadata
and recognizing patterns. Similarly, app fingerprinting attacks have shown to successfully derive in-
dividual apps used by users, by only looking at the metadata of LTE traffic of those users. This
could also be done in different ways, e.g. by extracting Transport Block Size (TBS) information
from decoded Downlink Control Information (DCI) messages, applying deep learning algorithms
and thereby classifying a set of six apps [4] or by creating a model based on the packet sizes and the
probability that it appears [3]. Apart from the individual apps, the user actions that are performed
inside apps, can also be retrieved. [5].
All of these aforementioned studies focus on active traffic, i.e. traffic that results from user activity.
In our research, we will focus on passive traffic. Our goal is to be able to track users, while they are
not actively using their phone. Rather than the type of traffic, websites or individual apps, we will
focus on combinations of apps and the traffic that they generate. If we can derive patterns in the LTE
network traffic that are different for each combination of apps, this means we can distinguish different
users as they all have their own unique set of apps installed on their phone.

4 Preparing the setup
In this section, we will discuss how to build our experimental setup the that we are going to use in our
research. We have an SDR (USRP B205 mini-i [33]) and a phone (POCO F2 Pro [34]) at our disposal.
Our goal is to create an LTE network where the SDR functions as a fake base station. The phone
will be used to simulate users connecting to our LTE network. We start by preparing the phone to be
ready to connect to the network that we are going to setup.

4.1 Installing a programmable SIM card
For our phone to connect with our custom LTE network that we are going to setup, we need a
programmable SIM card. We will use the sysmoISIM-SJA2 [35]. To program the SIM card, we require

6

• a card reader, e.g. the HID OMNIKEY 3121 [36]

• software to program the card, such as PySIM [37]

After installing the software and its dependencies and connecting the card reader, we can program the
SIM card as shown in the example below (based on an example from [38]):

./pySim-prog.py -p 0 -x 101 -y 02 -t sysmoISIM-SJA2 -i 101020000000003 -s 8988211000000012345
–op=11111111111111111111111111111111 -k 8BAF473F2F8FD09487CCCBD7097C6862 -a 53770832

If we then insert the SIM card into the card reader, this will be the output:

Insert card now (or CTRL-C to cancel)
Generated card parameters :
> Name : Magic
> SMSP : e1ffffffffffffffffffffffff0581005155f5ffffffffffff000000
> ICCID : 8988211000000012345
> MCC/MNC : 101/2
> IMSI : 101020000000003
> Ki : 8BAF473F2F8FD09487CCCBD7097C6862
> OPC : 8e27b6af0e692e750f32667a3b14605d
> ACC : None

Programming ...
Done !

We need the OPc later, when editing the srsRAN configuration files in section 4.2.3.

4.2 Creating an LTE network
To perform our attack, we need to set up our own an LTE network. Our attack involves the use of
a malicious eNodeB, which we are going to simulate using our SDR. We will also use a computer, on
which we run software called srsRAN [39]. This software creates an LTE core network on the computer.
It also turns the SDR that we connect to the computer into an eNodeB, but in order for that to happen,
we first need to install a hardware driver for the SDR called UHD [40].

4.2.1 Installing UHD

In order to set up UHD, we will perform the instructions listed on [41] on a machine that runs Ubuntu.
We start with the following commands:

sudo add-apt-repository ppa:ettusresearch/uhd
sudo apt-get update
sudo apt-get install libuhd-dev uhd-host

We can use this command to make sure the installation of UHD is successful and the SDR can be
detected on the computer:

uhd_find_devices

In our case, we have the following output:

Figure 2: The output of the command uhd_find_devices

7

This shows that UHD is installed correctly and our SDR has been detected.
If any errors are displayed at this point, it could be the result of broken packages or unmet depen-
dencies. In those cases, the problem could be resolved by uninstalling and reinstalling UHD while
resolving any errors that might occur during this process. If UHD was installed using the command
above, we could uninstall it using:

sudo apt remove libuhd-dev uhd-host

4.2.2 Installing srsRAN

Installing srsRAN can be done using the source or using package installation. [42]. We will use the
source installation, for which we will first need to install the required packages:

sudo apt-get install build-essential cmake libfftw3-dev libmbedtls-dev libboost-program-options-dev
libconfig++-dev libsctp-dev

We can now download and build srsRAN from source
git clone https://github.com/srsRAN/srsRAN_4G.git
cd srsRAN_4G
mkdir build
cd build
cmake ../
make
make test

After building, we can install srsRAN:
sudo make install
srsran_4g_install_configs.sh user

4.2.3 Managing configuration files

We need to make sure that the configuration files for srsRAN are created using this command:
sudo srsran_4g_install_configs.sh

We can then view the configuration files, which are located in the folder /etc/srsran_4g or in the
folder /etc/srsran/ when using an older version of srsRAN.
The relevant files in this folder are the following:

• epc.conf
The file epc.conf is the configuration file for the core network. It is important to keep these lines
in mind:
mcc = 001
mnc = 01
apn = srsapn

• enb.conf
We have similar entries in the file enb.conf, which is the configuration file for the eNodeB. We
need to make sure that the values for mcc and mnc in enb.conf match the values in epc.conf.
We also need the mcc, mnc and APN later, when we are changing the phone settings in section 4.4.

In order to record the traffic that flows through our malicious eNodeB, we can tell srsRAN
to save the traffic into a PCAP file. We can achieve that by uncommenting the following lines
in enb.conf and specifying the desired filename:
[pcap]
enable = true
filename = enb.pcap

8

• user_db.csv
In user_db.csv, we need to add an entry with the following details:

– Name: Any human readable value
– Auth: Authentication algorithm (xor/ mil)
– IMSI: UE’s IMSI value
– Key: UE’s key, hex value
– OP Type: Operator’s code type (OP/ OPc)
– OP: OP/ OPc code, hex value
– AMF: Authentication management field, hex value must be above 8000
– SQN: UE’s Sequence number for freshness of the authentication
– QCI: QoS Class Identifier for the UE’s default bearer
– IP Alloc: IP allocation strategy for the SPGW

The values that we add here should match the values of the same parameters that we used in
section 4.1 to program the SIM card, such as the IMSI and the OPc.
However, the example shown in section 4.1 is not our own example, but from another website
[38].
In our case, we will add this line to the file:

Magic,mil,001010000000002,4baee4d1600b1d2f6ece6373a59a1a14,opc,
358422278845a5632bbfb7b354db103a,9000,00000000634e,9,dynamic

4.3 Running our LTE network
In order to start running the LTE network that we have just created, we have to open up two terminal
windows and enter a command in each of them:

1. Start our LTE core network:
Enter the following command in the first opened terminal window:
sudo srsepc

2. Start our eNodeB:
This command should be entered in the second terminal window:
sudo srsenb

This, of course, requires the SDR to be connected to the computer on which we execute the
command

In order to stop our LTE network from running, we just have to stop the programs that are running
in both terminals. This could be done using ctrl+c in each of them, for example.

4.4 Connecting the phone to our LTE network
So far, we have already been taking the first steps in connecting the phone to the network, namely
programming the SIM card with the right parameters (in section 4.1) and adjusting the configuration
files to match those parameters (in section 4.2.3). Now we need to make sure that the phone can
indeed connect, by changing the settings on the phone. We proceed with the following steps:

• Add an APN
If we go to Network Settings > Access Point Names on the phone, we will find the option add a
new APN.
It is important to make sure that we add the same information for mcc, mnc and APN as we
specified in epc.conf in see section 4.2.3.
As shown in figure 3, we did not specify a "Bearer", but if the phone does not connect, it might

be necessary to set the bearer to LTE.

9

Figure 3: The settings for the newly added APN

• Let the phone access the internet
To make sure that the phone can use mobile internet, we need to connect our own LTE network
to the internet. Since our LTE network runs on a computer, we can use the computer’s internet
connection for the LTE network.
This can be achieved using the masquerading script [43] which we can call using the following
command:
sudo [srsran folder]/srsepc/srsepc_if_masq.sh [interface]
Here [srsran folder] is the path to the folder that we used to install srsRAN and [interface] is the
name of the network interface of the computer (e.g. "wlp2s0" or "eth1"). After this command,
the LTE network has to be restarted (similar to section 4.3).

• Use airplane mode to force connecting
At this point, we should be able to connect our phone to our LTE network. If this does not
happen automatically, it can be enforced by enabling airplane mode and then disabling it again.
After it is disabled, the phone will try to connect to a network again.
It might also work to manually search for mobile networks in the network settings and then
select the one created with srsRAN. However, our network was not visible in that list, while
using airplane mode to force reconnecting did trigger a successful connection with our network.

• Optional: hidden menu
If the phone still does not connect to the LTE network at this point, it might be necessary to
access a hidden menu. The way to access such a menu depends on the brand of the phone. In
our case, we could dial *#*#4646#*#* to open the menu. In this menu, it is important to
enable LTE connections, even if it is already enabled in the regular phone settings.
We noticed that this could make a difference in our early attempts to establish a successful
connection.

4.5 Simulate multiple users
In a real world scenario, we would record the data of multiple users simultaneously. Using a malicious
base station or a sniffer, we would observe and process the data of all phones that are connected to
the base station. In this thesis, our setup is limited to one phone only. This therefore requires us to
simulate multiple users onto a single phone. We describe our method to achieve this below.

4.5.1 Preparing the phone

The first thing we do is installing the 500 most downloaded apps worldwide [44] on the phone. We
included the list of these 500 apps and their package names in Appendix C.

10

4.5.2 Installing the apps

Installing 500 apps by hand would be an immensely time-consuming process. Therefore, we want to
automate this process using adb. Adb [45] is software that makes it possible to control a phone using
a computer (through a USB connection or SSH). Using a script that executes adb commands, we can
open each app that we want to install in the Google Play store and then automatically hit the install
button from there. This means that we need a script with the following abilities:

• Execute system commands, including commands that use adb

• Emulate a user that taps the screen at specific coordinates

• Open the Play Store and go to the specific app that we want to install

• Find the install button and then tap it

Appendix A.1 shows a simplified version of such a script. Using this script, we can then call the
function installapp() for every package name on the list of package names of the apps that we want
to install. However, it is important to note that while running a script like the one suggested in
Appendix A.1, one will notice that several errors can occur. For example, not every app is available
in the Google Play Store. This can be due to several reasons, including country specific restrictions.
To avoid these restrictions and other problems that might occur during the process of installing 500
apps, extensive error handling is required that causes the actual code to be significantly more complex
than this simplified example. For example, some apps have to be installed through a 3rd party source,
which requires keeping track of which apps did not successfully install through the Play Store and
creating an additional script that retrieves them from another source. Therefore, the purpose of the
provided script is only to give a general idea how one might proceed in installing the 500 apps using
a script.

4.5.3 Enabling and disabling apps

On Android, it is possible to enable or disable apps. When an app is disabled, it cannot be used and
will not generate any traffic. However, an app can be re-enabled at any time, allowing the user to use
the app again and generate traffic.

(a) Enabled app with disable
option

(b) Disabled app with enable
option

Figure 4: An app can be disabled or enabled in the settings of the app

We are going to use this principle to simulate different users on one phone. The idea is that every
user has a unique set of apps that will result into unique traffic patterns. To simulate that, we disable
all of the 500 apps and then only enable a specific, randomly generated subset of apps. By doing so,
we simulate one user. If we want to simulate another user, we will disable all of the apps again and
enable another randomly generated subset of apps. We will call these randomly generated subsets of

11

apps that imitate users "profiles".
While figure 4 shows how to enable and disable apps in the settings, we will do this with a script. This
script will be using the following adb commands:

• Enable an app:

adb shell su -c pm enable [package name]

• Disable an app:

adb shell su -c pm disable [package name]

It is important to note that the phone needs to be rooted in order to be using these su commands.
This can be a laborious process, especially with brands that purposely make it almost impossible to
achieve this. However, it is worth investing the effort, given the fact that it is an essential step in being
able to disable/enable apps and therefore being able to use profiles.

4.5.4 Profiles

As mentioned earlier, we will be creating "profiles", which are randomly generated subsets of the total
of 500 apps that we have installed on the phone. By disabling all of those 500 apps, except for the 50
apps in a profile, we can generate traffic for a specific set of apps and thereby simulate a user. If we
then later also disable all the apps in that profile and enable the apps inside a different profile, we can
simulate another user. This way, by repeatedly disabling all apps and then enabling the apps inside a
profile, we can simulate different users.

In other words, we will:

1. Disable all 500 apps

2. Activate one of these profiles
(by enabling the selection of the 50 apps inside it)

3. Capture the LTE network traffic generated by the apps in the activated profile
(for 1 hour)

4. Deactivate the profile
(by disabling all apps again)

5. Repeat this process for the next profile

We can represent the 500 apps that we will install as dots in a matrix: a green dot for an enabled app
and a grey dot for a disabled app. Figure 5 shows what that matrix would look like if we enable all
apps (figure 5a) or disable all apps (figure 5b).

(a) All apps
enabled

(b) All
apps

disabled

Figure 5: A matrix of 500 dots, representing the 500 apps we will install

After having disabled all apps (figure 5b), we will re-enable a random selection of 50 apps. In other
words, we will be activating one of the profiles. Figure 6 shows three examples of such randomly
generated profiles.

12

(a) Profile 1 (b) Profile 2 (c) Profile 3

Figure 6: Examples of random subsets (profiles) of 50 apps that we can enable on the phone

While these are only three examples, we will be using 20 profiles. Appendix D shows the 20 randomly
generated profiles that we will be using in our research. We will record the data of each profile for 1
hour. We will repeat this entire process 9 times, such that the traffic of each profile is being recorded
10 times in total. This means that we will end up with 20 profiles × 1 hour per recording × 10 times
= 200 (hours of) recordings. Each recording will have its own PCAP file, so we will also end up with
200 separate PCAP files. When we are going to analyze these PCAPs later, our goal will be to be able
to correctly determine what profile was being used in each PCAP file, without using prior knowledge.

4.6 Account for software or hardware crashes
As mentioned in section 4.2, we will use software called srsRAN and an SDR to create the LTE network.
We noticed that both this software and hardware can be unstable, meaning that it is highly likely that
our setup will freeze at some point. It is important to take this into account, such that our setup can
recover from this state whenever this occurs. In that light, we will use this section to discuss different
types of failures, how to detect them and how to recover from them while running our setup, such
that we can continue our experiments without human interaction. Moreover, we will present a state
transition diagram that shows how to automate this process.

4.6.1 Detect a crash using the phone’s connection state

In our setup, we can use the phone’s connection state to see if the phone is still connected to the SDR.
By connecting the phone directly to the laptop using a USB cable, we can use adb to see if the phone
has an LTE connection:

adb shell dumpsys telephony.registry
This is an example output:

Figure 7: Output when the phone is not connected

Despite the wealth of data that is being returned after using this command, we direct our attention
only to what is highlighted in this screenshot: mDataRegState=1. This means that the phone is not
connected. If the phone is connected to the LTE network, its value would be 0:

Figure 8: Output when the phone is connected

To only extract this value, we can use this command:
adb shell dumpsys telephony.registry | grep -i -o ’\smDataRegState=.’

13

We can incorporate this command in our setup, by using this command in the Python script that will
run our setup. Please refer to Appendix A.2 to see an example code of a Python function that uses
this command. It extracts and returns the relevant value from the output of the command.

4.6.2 Recover the connection using Airplane mode

Since a crashed SDR would result in a disconnected phone, we can use this value to detect a crashed
SDR. However, it is important to note that a phone can be disconnected for several reasons. This
means that the absence of phone connectivity alone does not necessarily imply a crash of the SDR.
But if the SDR did not crash, there is high likelihood that we would succeed in reconnecting the phone
using airplane mode. With adb we can:

• pull down the top menu in Android

• activate airplane mode
(by automating a tap on the airplane icon)

• wait a couple of seconds

• disable airplane mode
(by tapping the airplane icon again)

Leaving airplane mode will force the phone to make a reconnecting attempt. It is not uncommon that
this will only work after two or more attempts. Therefore, if this strategy seems ineffective, we still
have to repeat this process several times in order to make sure that it is not the phone’s fault that it
has lost connection.

4.6.3 Recover the connection by killing srsRAN

If only trying to reconnect the phone does not seem to be effective, it still does not necessarily indicate
that the SDR has crashed. It could also be that it is just the software srsRAN that has entered a state
that it cannot recover from. Therefore, we need to kill and reboot srsRAN. As explained in section
4.3, we run our LTE network using two srsRAN programs: srsepc and srsenb. In order to kill srsRAN,
we need to end both of them. Since we want to automate this process, we do not do this by pressing
ctrl+c in the terminal windows of both programs. Instead, we can kill both of them with the following
command:

kill [pid]
Here, [pid] is the process identifier: a number that is a reference to the program that we would like to
kill. So we first need to find the pid for both srsepc and srsenb, such that we can execute that kill
command for both of them. We can find the pid of srsepc using this command:

sudo ps -aux | grep srsepc
However, this returns a list of multiple processes that have "srsepc" in the name. In order to kill
srspec, we also need the one that is ran by root and has "S+" in the 6th column. But since this could
still be the grep process from the command itself, we need to make sure that the last column does
not contain "grep" or "–color=auto". Taking all of this into account, we can create the Python script
from listing 5 in Appendix A.3 to get the pid of srsepc.
If we run that script, then this will the output:

Figure 9: The output of our Python program to find the pid of srsepc

14

What we see in this screenshot is that the command to find the pid returned multiple lines. The
first line is the one that satisfies our requirements, which will therefore be selected. That line is split
into a list that we see at the end. The pid is the second element in that list: 27347. Similarly, we
can retrieve the pid of srsenb by calling getPid("srsenb") using the script above. Now that we have
retrieved the pids of both srsepc and srsenb, we can kill them both using the kill command that we
mentioned earlier. Listing 6 in Appendix A.3 provides a code sample with a killprogram(keyword)
function and a killsrsRAN() that calls both killprogram("srsenb") and killprogram("srsepc").
After both programs have successfully been killed with the killsrsRAN() function, we can reboot
them using the commands sudo srsepc and sudo srsenb as explained in section 4.3.

4.6.4 Maintain the state before killing srsRAN

Whenever we have to kill and reboot srsRAN as explained above, we want to make sure that we
continue our recording at the moment it stopped. For example, if we had to kill srsRAN after 37
minutes of recording profile 7 (repetition 3), we want to make sure it continues with profile 7 (repetition
3) for another 23 minutes after we have rebooted srsRAN. This way, we can still achieve the 1 hour
recording for each profile during each repetition. To achieve this, we can rename the PCAP that is
created by srsRAN to profile-7-repetition-3-part1.pcap, right after we kill srsRAN. We also
keep track of how many minutes it has recorded so far in a separate text file. Whenever our script
reboots srsRAN, it sees that the most recent file is profile-7-repetition-3-part1.pcap. It then
realizes that the recording has stopped unexpectedly and it has to look in the separate text file to
calculate how many minutes it still has to record. After it starts recording again and the rest of
the recording is finished, it will be saved to profile-7-repetition-3-part2.pcap. We can later
merge profile-7-repetition-3-part1.pcap and profile-7-repetition-3-part2.pcap into one
file named profile-7-repetition-3.pcap. Next, it will start with profile 8 (repetition 3). To ensure
that the right profile is activated when we continue after a crash, we will close and disable all of the
apps again and then re-enable and open the apps inside the current profile. This will make sure that we
do not falsely assume that certain apps are enabled or disabled, while that does not reflect the actual
state of the phone. However, there is a downside to this approach, as closing, disabling, enabling and
opening 50 apps in a row using adb commands can be time-consuming.

4.6.5 Recover the connection by unplugging the SDR

If we cannot recover the phone’s connection state using Airplane mode or by killing srsRAN, it is
very likely that the SDR has crashed. In that case, we need to unplug the SDR, wait a while and
then reinsert the the USB-cable into the computer. Performing this action manually would slow down
the data collection process immensely, as we would have to notice it first and be in the position to
act on it before our setup can continue. To avoid delays like this, we also want to automate this process.

Steps in reconnecting the SDR to the computer
In order to simulate the disconnecting and reconnecting of the USB cable of the SDR, we have to do
the following things:

1. Kill srsRAN (as explained in section 4.6.3)
to stop any software from trying to communicate with the SDR

2. Reset the SDR
by cutting the power to the SDR through USB, leave it powered off for certain amount of time
and restore the power to the SDR.

3. Reset the USB connection with the SDR on the computer
as suddenly cutting the power of the SDR results in difficulties communicating between the
computer and the SDR

4. Reboot srsRAN

To cut the power to the SDR, we can make use of a "smart" or "managed" USB hub. With additional
software, we can disable and restore the power on an individual USB port on that hub. In our setup,
we use an USB hub from Amazon Basics together with a tool called Uhubctl [47].

15

This USB hub also has another advantage apart from the ability to reset the SDR if errors occur.
We noticed that the SDR sometimes experiences issues related to not getting sufficient power from the
USB port. This resulted into errors, that we no longer experienced as soon as the SDR was connected
to the USB hub. We assume that this is the result of the USB hub having its own power source, which
also causes the SDR to always be provided of sufficient power.

4.6.6 Killing srsRAN vs. unplugging the SDR

We have described the possible solutions of killing srsRAN and unplugging the SDR in section 4.6.3
and section 4.6.5, respectively. As discussed earlier, killing srsRAN is also a part of the process of
unplugging the SDR. As this unplugging process encompasses the steps of rebooting srsRAN and also
additional ones, it requires more effort than just rebooting srsRAN. In that light, it may seem intuitive
to only start the unplugging process if killing srsRAN has shown to be ineffective. However, the most
time-consuming part of unplugging the SDR is rebooting srsRAN (due to all the steps mentioned in
section 4.6.3 and section 4.6.4).
If we would start the unplugging process only after rebooting srsRAN has shown to be ineffective, this
means that we would have to perform the time-consuming reboot of srsRAN twice: once to conclude
that it is ineffective and once as part of the unplugging process. Therefore, significant time savings
can be achieved by only rebooting srsRAN once. We can achieve this by skipping our attempt to only
reboot srsRAN and instead directly initiating the unplugging process after deactivating airplane mode
has shown to be ineffective to recover the connection. This means that we might unnecessarily unplug
the SDR while just rebooting srsRAN would have sufficed. While this may be a minor inconvenience,
it pales in comparison to the time and effort it takes to reboot srsRAN twice.

4.6.7 Automate the above

As explained in sections 4.6.2, 4.6.3 and 4.6.5, we have three solutions to recover from a potential crash:
using airplane mode, killing srsRAN and unplugging the SDR. Figure 10 shows how we combine these
solutions (marked in orange) in our setup, to enable timely detection and recovery from any crashes:

• While running our setup, we will periodically verify that the phone is connected
(every 5 seconds).

• If the phone is not connected, we perform several attempts to restore the connection using
airplane mode (as discussed in section 4.6.2).
If the phone’s connection is restored during those attempts, the counter will be reset.
If the connection is still not restored after 5 attempts, we continue to the next step.

• The state of the recording will be saved (as explained in section 4.6.4), we will initiate both the
solution of killing srsRAN and unplugging the SDR (see section 4.6.6) and we will then reboot
our setup and recover the state.

While it is highly unlikely that even this last step is not an effective remedy to recover from a crash,
it is not impossible. If that occurs, our setup will retry all of the aforementioned steps, increasing
the likelihood of recovering from the crash even further. If, however, our setup still has not recovered
after several times unplugging the SDR, it is probable that other factors than a crash are the reason
for the phone being unable to reconnect. In those cases, we will undertake a careful evaluation of the
situation, and take appropriate measures based on the nature of the issue at hand.

4.7 Configuring the permissions of the apps
To make sure that the 500 apps that we installed on the phone are actually sending and receiving data
from the servers that they connect with, we aim to eliminate any obstacle that might prevent that
from happening. Depending on how each individual app is built, such an obstacle might be the fact
that an app has not been granted the permissions it requires to operate. To ensure that this does not
happen, we will grant every app all of the permissions that it wants. However, doing this manually by
enabling all permissions in the settings of each app would be an exceedingly time-consuming process.
Therefore, we want to automate this process. To achieve that, numerous extensive steps have to be

16

Figure 10: Flow chart demonstrating how to recover from a crash

taken. Appendix B presents a comprehensive outline of the procedural steps involved in this auto-
mated process.

It is important to realize that assigning any permission to an app on a phone, without question-
ing its relevance, can result into various parties being able to collect unnecessary great amounts of user
data. This undermines the intended functionality of the permissions system and poses a great privacy
threat to the phone user. While this practice supports our research, it should not be applied outside
the scope of a research environment.

4.8 Other things to account for
We have explained how to account for crashes in our setup in section 4.6, and in section 4.7 and
Appendix B, we showed how to take the permissions into account. Apart from these crashes and
permissions, there are other things we need to take into account to make sure our setup can run
successfully:

• Root the phone
As mentioned in section 4.5.3, the phone requires to be rooted in order to use commands that
enable and disable apps. Without those commands, we cannot activate a profile, which makes
rooting the phone a crucial step. In our case, we had to engage in an elaborate process to
make this happen. Xiaomi, which is the manufacturer of our POCO F2 Pro, had created several
obstacles that made it almost impossible. Steps included in this process were changing hidden
settings, installing fastboot, unlock the bootloader, installing Magisk, installing a custom ROM,
using the Miui unlock tool, creating a Xiaomi account with personal details, waiting a couple
weeks, etc. All of these steps have to be taken in the right order and even then errors can occur
that have no other solution than retrying. For creating a setup like ours, it is important to keep
in mind that the process of rooting the phone can be one of the most time-consuming parts.

• Sleep mode on the computer
Both the phone and the SDR will be connected to a laptop that runs srsRAN. Since we are
recording for period of time that extends beyond the usual interval that a computer hibernates,
we have to disable the sleep mode to avoid interruptions.

• Overheating
Since our setup will run continuously for more than 200 hours, devices in our setup may experience
an elevation in temperature beyond the standard operational range. To prevent any device
from shutting down due to overheating, we need to take appropriate measures to control the
temperature of the devices.
For that matter, we will place several heat sinks on the devices. Another possible solution could
be to cool the devices using liquid nitrogen [49].

17

5 The attack setup
In section 4, we have discussed the tools we need and all kinds of things we need to take into account
when creating our setup. In this section, we will demonstrate the result.

5.1 Diagram of the setup

Figure 11: Diagram of the setup that was used

Figure 11 shows us a diagram of the setup that we are using.

5.1.1 Components

The setup comprises the following components:

• A phone
to simulate different users generating LTE traffic using their apps (see section 4.5). We are using
the Poco F2 Pro.

• An SDR
We use a USRP B205-mini-i as an eNodeB for our LTE network.

• A laptop
To establish our LTE network:

– Running srsRAN to create a core network for our LTE network and to use the SDR as an
eNodeB;

– The internet connection of the laptop is used to provide an internet connection to the phone
that is connected to our LTE network;

– Capture the LTE traffic and save it into a PCAP file.

And to control the phone:

– Enabling and disabling apps on the phone, such that we can switch profiles
(see section 4.5.4);

18

– Read the connection status of the phone
(see section 4.6.1);

– Use airplane mode to restore LTE connection with the SDR in case it is disconnected
(see section 4.6.2).

• A USB hub
To provide sufficient power for the SDR and for automating the process of unplugging the SDR
and reinserting its USB cable in case the SDR has crashed (see section 4.6.5).

5.1.2 Connections

The phone is connected to the laptop with a USB cable and to the SDR with an LTE connection. The
SDR is connected to the USB hub with a USB cable. The USB hub has two cables: one USB cable
to the laptop and one power cable that we connect to a wall outlet. The USB hub is part of the USB
connection that is used for the the laptop and the SDR to communicate with each other.

5.1.3 Script

The main component of our setup is the laptop as it will control everything in our setup: the phone,
the SDR, the USB hub and srsRAN. In order to achieve that, we create a Python script that has the
following abilities:

• Run srsRAN (srsepc and srsenb)

• Disable and unable apps on the phone in order to switch profiles (see section 4.5.4)

• Recover from a crash as shown in figure 10, which includes:

– Reading the phone’s LTE connection state (see section 4.6.1)

– The ability to enable and disable airplane mode on the phone (see section 4.6.2)

– Stopping and rebooting srsRAN (see section 4.6.3)

– Unplugging the SDR and reconnecting it using the USB hub (see section 4.6.5)

– Save the current state of the recording and restore the state (see section 4.6.4). This means:

∗ Keeping track of what profiles have been recorded
∗ How many times each profile has been recorded

(i.e. in what iteration we currently are)
∗ The duration of the current recording before we lost connection
∗ The part number of the current recording.

For example, if this is the first time srsRAN crashes during this recording, we call this
part1 of the recording. If we later continue, then that will be part2 of the recording.

6 Attack analysis
In this section, we will discuss how we are going to process and analyze the LTE data that we will be
recording.

6.1 The output data of our setup
After having run our setup successfully, we have collected the data that is needed for our attack. The
data is saved in PCAP files that are named according to the following convention:
profile-[profile number]-repetition-[repetition number].pcap.
Some files may also have part numbers in their name, as the setup might have been crashed and
recovered while collecting the data. Those files can be merged into a single file and renamed conform
the earlier mentioned convention. Since we are recording 20 profiles for 10 repetitions, we will end up
with 200 PCAP files.

19

6.2 Extracting relevant data from the PCAP files
Each PCAP file contains a large amount of data. Processing all of this data could be time-consuming,
while it may not necessarily align with our intended objectives. In our case, it is sufficient to only
extract a relevant portion of the data, rather than processing the entire data set. To this end, we first
have to identify the relevant data that we want to extract from each PCAP file.
The relevant data will be something that allows us to distinguish the traffic of different users, while
simultaneously revealing similarities that can identify traffic originating from the same user. The net-
work traffic that we will be looking at, is the result of apps on a users phone communicating with their
server, for purposes such as providing accurate and up-to-date information, authentication, tracking,
advertisements, etc. App providers are often also the ones that control those server, such that they
can handle user data securely, ensure availability of their services, implement specific configurations
required for their app and scale their infrastructure based on demand. Therefore, the servers and
the requests to those servers can be very specific for each app. This means that we might be able to
distinguish traffic based on what server is being requested. To this end, DNS queries might seem like
a viable option. However, due to DNS caching and the fact that we are only using passive data, we
expect that the majority of DNS lookups are already stored in the cache. Therefore, it is probable
that our data will contain very few, if any, DNS queries. Consequently, IP addresses are likely to be
a more promising starting point. When using IP addresses to distinguish traffic, it is important to
realize that multiple IP addresses could be associated with the same autonomous system (AS). This
means that we should convert IP addresses to AS numbers (ASNs) first, before drawing conclusions
from it. Otherwise, we might unjustly distinguish traffic with requests to different IP addresses, while
they might request data from the same AS. Upon detecting the ASes within the recorded traffic, we
can then differentiate users by the ASes they interact with.

6.3 Looking at data from multiple users simultaneously
In our setup, only one profile at the time is activated, which means that each PCAP file only contains
the traffic of one user. However, in a real world scenario, an attacker would record the data of multiple
users simultaneously. To be able to only look at the data generated from one user at a time, he could
distinguish the traffic by looking at some variable that distinguishes the different flows of traffic. For
example, the Radio Network Temporary Identifier (RNTI) is a temporary identifier that the attacker
can use to temporarily distinguish the traffic of multiple users. The reason why the attacker does not
just use this identifier to identify users instead of our attack, is because this identifier is only temporary.
It changes every session, e.g. when the user connects to a different cell tower. The exact duration of
a session depends on the user activity, network conditions and the type of communication (e.g. web
browsing or voice calls or video streams). For example, a Voice over Internet Protocol (VoIP) session
could potentially last for hours, whereas a session for quick data transmission might only take seconds.
The RNTI could also be reset at any moment. This makes it too volatile for the attack to depend on
it long term.

6.4 Extracting IP addresses from the PCAP files
To obtain the ASNs from a PCAP file, we first have to extract the IP addresses from that PCAP. This
means that we need to read the PCAP file with a script. Using Python, this could be achieved using
the Scapy library [50]. However, in our case, it experienced difficulties in correctly interpreting the
LTE protocol while reading our PCAP files. Therefore, we used TShark [51] together with system calls
instead. To make sure that TShark can successfully read the PCAP files, we first need to configure its
settings on how to interpret LTE data. It is complex to do this in TShark itself, due to the absence
of a graphical user interface (GUI). Fortunately, Wireshark does have a GUI while it uses the same
dissection engine as TShark. This means that we can configure the dissectors in the Wireshark [52]
GUI and as a result, these changes will also affect TShark [51].

6.4.1 Altering dissectors in Wireshark

In Wireshark, we proceed with the following steps:

20

1. In the menu that appears after selecting
Edit > Preferences > Protocols > DLT_USER > Edit....,
we can add a new entry to the table where we set DLT to 149 and enter "udp" in the Payload
protocol column.

2. In Analyze > Enabled Protocols,
we can select and enable the following settings:

• MAC-LTE > mac_lte_udp

• MAC-NR > mac_nr_udp

3. When opening a PCAP file with captured LTE traffic in Wireshark, we can right click on any
MAC-LTE packet and go to: Protocol preferences > MAC-LTE > "Source of LCID –> drb.
Here we can make sure it is set to "From configuration protocol" (instead of "From static
table").

If we apply these settings, the data in any PCAP with LTE data looks similar to this:

Figure 12: Example of a PCAP file with LTE data, viewed in Wireshark

Because Wireshark and TShark share the same dissection engine, these changes now also directly affect
TShark. We can therefore now also read the LTE data in the PCAPs using TShark.

6.4.2 Using TShark to extract IP addresses

Using the following command, we can extract IP addresses from a PCAP file:
tshark -r "example-LTE-data.pcap" -T fields -e ’frame.time_relative’ -e ’ip.src’ -e ’ip.dst’

This will print the relative time of each frame, a tab, the source IP address, another tab and the
destination IP address.
Since our example file example-LTE-data.pcap also has some frames without a source and destination
IP, it is possible that some lines in this output only contain the relative time. It is also possible that
a frame contains multiple packets. In that case, multiple source and destination IP addresses will be
displayed, separated by comma. Here are five lines from the output of the command above that display
all of these examples:

...
11.724233000
11.725123000 8.8.8.8 172.16.0.2
11.725198000 172.16.0.2 8.8.8.8
11.726064000 172.16.0.2,172.16.0.2 8.8.8.8,8.8.8.8
11.727148000
...

We can process the output of this command with Python as follows:

21

1 #The shell command to extract the relevant columns of our PCAP file
2 tsharkcommand = "tshark -r ’example -LTE -data.pcap’ -T fields -e ’frame.time\

_relative ’ -e ’ip.src’ -e ’ip.dst’"
3 output = systemCmd(tsharkcommand)
4

5 #Convert the output to a list of lines
6 lines = output.decode("utf -8").split(’\n’)
7

8 #Iterate over the lines
9 for line in lines:

10 #Convert the line into a list of fields
11 fields = line.split("\t")
12

13 #Iterate over the different fields from this line
14 for i, field_value in enumerate(fields):
15 if(i == 0):
16 #Process the relative time field
17 ...
18 if(i == 1):
19 #Process the source IP field.
20 src_ips = field_value.split(’,’)
21 ...
22 if(i == 2):
23 #Process the destination IP field.
24 dst_ips = field_value.split(’,’)
25 ...

Listing 1: Extracting PCAP data in Python

While we extracted both source and destination IP addresses in this example, we will eventually
find the same IP addresses in both fields, as each app and the server are both involved in the same
connection, in which they will be acting as both sender and recipient. Therefore, it does not really
matter whether we look at source IP addresses, destination IP addresses or both. We will find the
same IP addresses in the PCAP file.

6.5 Converting IP addresses to AS numbers (ASNs)
Now that we can extract IP addresses from the PCAP files using TShark and Python, we can use
those IP addresses to convert them to AS numbers (ASNs). To convert an IP address to an ASN in
our Python code, we need an external library such as GeoIP2 [53] and a database such as GeoLite2
ASN database [54].
These allow us to create the following Python function that converts an IP address to an ASN:

1 def IPtoASN(ip):
2 geolitedatabase = "GeoLite2 -ASN.mmdb"
3 with geoip2.database.Reader(geolitedatabase) as reader:
4 #Try look up the IP in the database. If it fails , return None
5 try:
6 response = reader.asn(ip)
7 return response.autonomous_system_number
8 except ValueError:
9 pass

10 except TypeError:
11 pass
12 except geoip2.errors.AddressNotFoundError:
13 pass
14 return None

Listing 2: Function to derive an AS number from an IP address using GeoLite2 ASN database

This function will return the ASN if no error occurs. Otherwise, it will return None. Errors
could occur if, for example, the provided IP address is an empty string (ValueError) or a None type
(TypeError). It is also possible that no ASN can be found for the provided IP address, which is most
likely the result of that IP address being an internal IP address inside our LTE network, e.g. 172.16.0.2.
This IP address is used as an internal IP address for the phone that is connected to our LTE network.

Figure 13 shows the process of retrieving AS numbers from a PCAP file. We will create a Python
script - called PCAP-to-ASN.py - that uses TShark to extract the IP addresses. The script then
converts those extracted IP address to AS numbers, using GeoIP2 and the GeoLite2 ASN database.

22

Figure 13: Extract AS numbers from each PCAP file and append them to ASnumbers.py

The number of resulting ASNs can be less than the amount of IP adresses we extracted, since multiple
IP addresses can belong to the same AS. The script creates a list of the following format:

[[profile number, repetition number], [list of obtained ASNs]]

The profile number and repetition number are retrieved from the filename of the PCAP. We will
then append this list to a file called ASnumbers.py. Since we will be performing these steps for all
PCAPs, this means that ASnumbers.py will eventually contain a list with sublists of ASNs for each
PCAP. So even though we will feed 200 PCAP files to PCAP-to-ASN.py, we only have one output file
(ASnumbers.py) that contains all of the extracted AS numbers. This file is also the script that we will
include in our next step (as shown by figure 19 in section 6.9).

6.6 Convert ASNs to Boolean vectors
Now that ASnumbers.py contains the 200 ASN lists (derived from our 200 PCAP files), we will convert
each of these lists to a Boolean vector. The achieve this, we use a method that exhibits similarities to
the concept of one-hot encoding [64]. To demonstrate how we will be performing this process, we will
present a simplified example with only five ASN lists.

Example
Imagine that we have five PCAP files, from which we extracted the following lists of ASNs:

Figure 14: The PCAP files and their ASN lists

We will now add all of these AS numbers from the different lists into one big list and we will remove
duplicates. The resulting list will look as follows:

Figure 15: The list with all ASNs from each PCAP combined

This new list from figure 15 can now be compared to each of the original ASN lists obtained from the
five PCAP files (figure 14) to see which of the AS numbers occur in those lists and which do not. By
doing so, we can convert each ASN list into a Boolean vector. It works as follows:

23

• For each PCAP’s ASN list, do the following:

1. Create a new list, which we will call the ASN vector.

2. For every ASN in the list from figure 15, see if it is also present in the PCAP’s ASN list
that we are looking at right now:

– Yes → add a 1 to the ASN vector of this PCAP
– No → add a 0 to the ASN vector of this PCAP

After completing this algorithm, each PCAP will have its own ASN Boolean vector, which is a list
with the same number of items in it as the one from figure 15. But instead of AS numbers, these ASN
vectors will contain a 0 for each ASN that does not occur in the PCAP’s ASN list and a 1 for each
ASN that does occur in it. This will result in the following ASN vectors:

Figure 16: Each PCAP file and the corresponding ASN vector

Now that every PCAP has its own Boolean vector, we can determine the similarity of two PCAP files
by comparing their ASN vectors. The goal of comparing two PCAP files this way, is to see whether
the same profile was used when the traffic from both files was generated. If the ASN vectors show a
high similarity, we know that the same profile was activated when they were generated. This therefore
allows us to distinguish users, based on their traffic.

6.7 Determining the similarity of two PCAP files
In order to determine the similarity of two Boolean vectors, we can use a distance metric. There are
different distance metrics that we could use and they can all have (slightly) different outcomes. Two
PCAP files might score higher in similarity when using one distance metric, while scoring lower in
similarity when using another. These slight variations could potentially impact the outcomes of our
attack and affect our ability to distinguish users. Therefore, we will evaluate the performance of several
distance metrics by comparing their results. Since we are dealing with (ASN) Boolean vectors, we will
compare some common metrics that are intended for Boolean vector spaces. For example, we can find
eight examples of such metrics in the Scikit-learn documentation [55].

When comparing the values of two Boolean vectors, we will notice that sometimes their values are
equal (i.e. both True or both False) and sometimes their value is different (i.e. the value is True in
one vector but False in the other vector or the other way around). We can use the following variables
as counters to keep track of these different possibilities:

• N: the number of dimensions

• NTT : number of dimensions in which both values are True

• NTF : number of dimensions in which the first value is True, second is False

• NFT : number of dimensions in which the first value is False, second is True

• NFF : number of dimensions in which both values are False

Using these variables, we can list the eight distance metrics that we will use, together with their
distance function [55, 63] in table 1:

24

Distance metric Abbreviation Distance function

Dice coefficient Dice NTF+NFT
2×NTT+NTF+NFT

Jaccard similarity Jaccard NTF+NFT
NTT+NTF+NFT

Kulsinski similarity Kulsinski 1− NTT
N+NTF+NFT

Matching coefficient Matching NTF+NFT
N

Rogers-Tanimoto similarity Rogerstanimoto 2(NTF+NFT)
N+NTF+NFT

Russell-Rao similarity Russellrao N−NTT
N

Sokal-Michener similarity Sokalmichener 2(NTF+NFT)
N+NTF+NFT

Sokal-Sneath similarity Sokalsneath NTF+NFT
NTT/2+NFT+NTF

Table 1: The distance metrics and their distance formulas

In this research, we will compare these different distance metrics and see which of them performs
best, i.e. which distance metric results in the highest correctly classified profiles. Given the fact that
Rogers-Tanimoto similarity and Sokal-Michener similarity have the same distance function, we expect
them to have identical results.

We can call any of these distance metrics in our Python code as follows:
1 from sklearn.neighbors import DistanceMetric
2 ...
3 #metricstr is a string containing the abbreviation (from the second column of the

table) of any distance metric
4 def compareVectors(vector1 , vector2 , metricstr):
5 dist = DistanceMetric.get_metric(metricstr)
6 return dist.pairwise ([vector1 , vector2]) [1][0] * -1

The exact implementation of these distance metrics themselves can be found on the Scikit-learn Github
[63]. In the rest of this document, we will refer to these distance metrics using their abbreviation,
specified in the second column of table 1.

6.8 Determining the profile of each PCAP
6.8.1 General idea

By using the earlier mentioned distance metrics on ASN vectors, we can now determine the similarity
between two PCAP files. Our objective now is to use this principle to be able to derive what profile
was activated when the LTE network traffic from a certain PCAP was generated. So if we have the
PCAP profile-2-repetition-5.pcap for example, our goal is to be able to determine that this
traffic belongs to profile 2. We already know this, since its file name reveals the answer, but we will
only use this information for verification. When trying to determine the profile of a PCAP file, we
will evaluate its similarity with all other PCAP files. We will use our knowledge of what profile was
being used in the other PCAP files, such that we can aggregate the similarity per profile. As a result,
each profile will have a certain score, which is the sum of the similarities between the current PCAP
file (from which we are trying to determine the profile) and the PCAP files that belong to that profile.
The profile with the highest score is most likely the profile that was also used in the current PCAP
file. We will then use the information from the file name of the PCAP to verify whether the profile
with the highest score does indeed match the profile described in the file name of the PCAP. If that is
the case, we have correctly identified a profile and therefore tracked a user. The goal of this research
is to discover for how many PCAP files we are able to correctly classify the profile using this method
and to see which distance metric aids us the most in doing so.

25

6.8.2 Example

To demonstrate how we are going to use the ASN vectors in this process, we will present a simplified
example with only 15 PCAP files (instead of our 200 PCAP files). In this example,

• we have 3 profiles and 5 repetitions.
Therefore, we have 15 PCAP files.

• the PCAP files are named "PCAP [number of the PCAP]", where [number of the PCAP] is a
number in the range 0-14.

• PCAP 0 to PCAP 5 belong to profile 0, PCAP 5 to PCAP 9 belong to profile 1 and PCAP 10
to PCAP 14 belong to profile 2.

• we have already generated an ASN vector for each of these PCAP files.

• we assign a name to one of the ASN vectors: ASN vector A.
This ASN vector belongs to the PCAP file from which we are going to determine the profile.

Figure 17: ASN vector A has the highest average similarity with profile 1

Figure 17 shows the similarities we find when comparing ASN vector A with the ASN vectors of all the
PCAPs. When we aggregate the similarities per profile, we see that profile 1 has the highest sum of
similarities. This means that we now know that profile 1 was activated when the traffic of the PCAP
of ASN vector A was generated.
However, we also notice a similarity of 1 with PCAP-6, which is suspicious. Apparently, ASN vector
A is identical to the ASN vector of PCAP-6. This is most likely the case due to the fact that the
PCAP of ASN vector A is in fact PCAP-6. So we have been comparing PCAP-6 to itself, which might
explain why the score of profile 1 is significantly higher than the score of profile 0 and profile 2. To
get an objective score, we should avoid comparing PCAP files with themselves. In other words, we
should avoid comparisons with two ASN vectors that are 100% identical. While it could theoretically
be possible that two distinct profiles have identical ASN vectors, we consider the likelihood of this
scenario to be negligible. This is because recorded network traffic always slightly differs among different
recordings, due to to the complex interplay of numerous variables that influence the generated traffic
(such as apps being in a slightly different state than before). This means that we can safely assume
that two fully identical ASN vectors belong to the same PCAP file. Whenever that happens, we will
exclude their similarity from the sum of similarities per profile. In this case, that means that we will
only use PCAP-5, PCAP 7, PCAP 8 and PCAP 9 to obtain an objective sum of similarities for profile
1. This is the 2.94 we see in the right most column in figure 17. But even then, profile 1 still has a
significantly higher score than profile 0 and profile 2, which still makes us arrive at the same conclusion:
profile 1 is the profile used in the PCAP of ASN vector A. Once we verify this, we will see that this
correct, since ASN vector A belongs to PCAP-6, which does indeed belong to profile 1.

26

6.8.3 In our setup

As opposed to this example above, we will have 200 PCAPs files (from 20 profiles with 10 repetitions)
instead of only 15. However, the method used in the example is identical to the method that we will be
using to attempt to classify the profile that was used in each of those 200 PCAP files. We will exclude
PCAP files with identical ASN vectors from comparisons, we will use the highest sum of similarities
for our classification and we will verify our conclusion using the knowledge we already have (which is
the profile that appears in the file name of the PCAP file).

6.8.4 Using shorter traces

In our setup, the data that has been recorded in each PCAP is 60 minutes of passive data. In our
analysis, we will be comparing the ASNs that we found during those 60 minutes in each PCAP and
see how this attack performs. Another aspect worth researching is how well this attacks performs with
data shorter than 60 minutes. With that knowledge, we can conclude whether an attacker can also
run its attack for a shorter period of time, making it more feasible to deploy. To this end, we will be
taking portions of the PCAP files by comparing only the AS numbers that we find withing specific time
intervals in the PCAPs. For example, to see how well this attack performs with only 30 minutes of
data instead of 60 minutes, we could limit ourselves to only use the data in the first half of the PCAP
for our attack. Another possibility is to use the second half of each PCAP for our attack. However, we
expect a difference in performance between these two options. Figure 18 shows the amount of packets
over time that we expect to see in each PCAP file. We see that most data is being sent at the beginning
of each PCAP and then declines during the rest of the hour that we have recorded. The reason why
we expect this, is because we have just activated the profile at the beginning of each recording. This
means that whenever we start a recording, the apps inside that profile were just being enabled and
opened. All of the 50 apps within the current profile are enabled and opened nearly simultaneously,
with a negligible time gap between the opening of the first and the last app, as they are launched
sequentially. At this point, they are re-establishing a communication with their servers, causing them
to exchange more data than moments where the connection has already been established. Therefore,
we expect to find more ASNs in the first half of the PCAP than in the second half, making our attack
perform better if we take the first 30 minutes. "Better" means that we will have a higher amount of
correct classifications. Therefore, when looking at smaller portions of our PCAP files, it is important
to research how well our attack performs with different start times. If tstart denotes the start time of
the interval that we will be focusing on, this means that we will be comparing the performance of our
attack with tstart = 0 and tstart = 1800. Similarly, if we want to see how well our attack performs
with just 15 minutes of data, we will compare the attacks for tstart = 0, tstart = 900, tstart = 1800 and
tstart = 2700. And when we evaluate the performance of our attack with only 5 minutes of data, we
will be comparing our attack for tstart = 0 and every tstart 300 seconds later, until tstart = 3300.

Figure 18: The expected declining number of packets over time in each recording

27

6.8.5 Accelerating our analysis

In figure 13, we have shown how we can extract IP addresses from the PCAP files, map them to ASNs
and append them to a file called ASnumbers.py. However, the process of using TShark to extract the
data from a PCAP file and the process of mapping all IP addresses to ASNs are both time-consuming
processes. As described in section 6.8.4, we are also interested in using parts of the PCAP files to
evaluate the success of the attack with a shorter recording time. This means that we have to repeat
the time-consuming process of generating ASnumbers.py every time we want to use a different part
each PCAP file. As an alternative, we could extract the relevant data from the PCAP files only once,
and save it to a CSV file for each PCAP. So for every PCAP file, we will create an equivalent CSV
with the following data for each packet: time the packet arrived, the source IP address, the destination
IP addresses and the ASN of both addresses.
Once we have generated our 200 CSV files, we can use those to generate ASnumbers.py. This way, we
never have to use TShark or convert IP addresses to ASNs again, as all the relevant data is already
present in the CSV files. If we want to see how our attack performs with solely the data that we
received during a specific time frame, we could decide to only extract the data in that specific time
frame from the CSV files, in order to generate ASnumbers.py. We can then continue our analysis with
that new version of ASnumbers.py. This significantly reduces the amount of time required for our
analysis due to the fact that we only need to use TShark once, to generate the CSV files.

6.9 Overview of the entire analysis

Figure 19: The different steps of the recorded LTE data in our analysis

Figure 19 gives us an overview of the different steps involved in our analysis of the PCAP files. It
illustrates two phases in our analyses: phase I to prepare the analysis, and phase II in which the
actual analysis takes place. The 200 PCAP files are shown on the left. The filenames displayed
below the PCAP icons are shortened in this image, meaning that p-0-r-0.pcap, for example, is
actual called profile-0-repetition-0.pcap. This is our first recording and our last recording is
profile-19-repetition-9.pcap. We have the following steps in our analysis process.

(i) Preparation for the analysis

(a) Convert PCAPs to CSV files
As previously discussed in section 6.8.5, we save the extracted data from each PCAP in a
CSV file, such that we only have to perform the time-consuming process of using TShark
once. For each PCAP file, there will now be a CSV file with the relative arrival time of each
packet, the IP addresses and the ASNs.
We do this with a Python script called PCAP-to-CSV.py.

(ii) The analysis itself

(a) Use (parts of) the CSV files to create ASN lists
Using a script called CSV-to-ASN.py, we will create the file ASnumbers.py similarly to how

28

we explained it earlier in section 6.5. The only difference is that we now extract the data
from the CSV files instead of the PCAP files directly. We can either use all the data from
the CSV files or only part of it, depending on the time period that we are trying to evaluate
the attack for.
ASnumbers.py will now contain a list for each CSV file with the ASNs that we extracted
from it, for the specified time interval.

(b) Running guess-profiles.py
Now that we have created the relevant data for our attack in the Python script ASnum-
bers.py, we can include that script in guess-profiles.py.
Our script guess-profiles.py can then use that data to guess the profile of an ASN list as
described in section 6.8.
Figure 19 shows that we can input "Some ASN list" to guess-profiles.py. This list could
either be

• one of the ASN lists that is also in ASnumbers.py
• a different ASN list.

For example, a list of ASNs that we extracted from another PCAP that is not part of
the 200 PCAP files that we used for ASnumbers.py.

Guess-profiles.py will then compute the similarities between the provided ASN list and the
ASN lists found in ASnumbers.py to determine to which profile the provided ASN list most
likely belongs.

Another way to use guess-profiles.py is as follows: rather than providing a separate ASN
list to verify, we will iterate over ASnumbers.py and derive the profile for every ASN list in
ASnumbers.py. ASnumbers.py also contains the profile and repetition number of each ASN
list, which allows us to also verify whether we correctly determined each of the profiles for
the ASN lists.
After using guess-profiles.py this way, we will have attempted to determine the profile of
all 200 ASN lists in ASnumbers.py and we also verified those 200 attempts. This means
that we know how many of those 200 classifications were correct, incorrect or unknown. We
can then save these results to results.csv and repeat our analysis for a different part of each
CSV file.

(c) The final contents of results.csv
After conducting our analyses, results.csv will contain the results of every analysis. Here is
an example of how this file could look:

comment,interval,correct,incorrect,unknown
step=3600,0-3600,180,10,10
step=1800,0-1800,170,16,14
step=1800,1800-3600,161,24,15
step=900,0-900,156,27,17
step=900,900-1800,153,29,18
step=900,1800-2700,149,29,21
step=900,2700-3600,120,56,24
...
step=300,3300-3600,90,75,35

The first column contains a string for each analysis, specifying the length of the time interval
that we used from each recording. "Step=3600" means that we used 3600 seconds of each
recording, which is the entire 60 minute recording.
"Step=1800" means that we are using only half of the data of each CSV file (1800 seconds
or 30 minutes). The interval column shows which half we used: "0-1800" (the first half) or
"1800-3600" (the second half). Since we want to research the results of both halves, both
of their results are included in this file.
Carrying forward with the notation, "step=300,3300-3600" means the last 5 minutes of each

29

recording. The other three values found on each line specify the results of the analysis: the
amount of correctly classified profiles, incorrectly classified profiles and how many profiles
we could not classify due to some error ("unknown").

In figure 19, we also see a Python script called attack.py. This script will call CSV-to-ASN.py with
certain parameters that specify the part of the CSV files that we are going to use for our analysis.
It will then call guess-profiles.py, that uses the ASnumbers.py that has just been created by CSV-to-
ASN.py. Attack.py will repeat these steps with different parameters, to see how using different parts
of the CSV files affect our attack. All results will be appended to results.csv, such that results.csv will
look like described in point (ii)c above.

7 Results
In this section, we will present the results of our experiments. We have used different recording times
in our experiment between 1 minute and 60 minutes. For each of these durations, we will show graphs
that compare the performance of the different distance metrics that we used. We will start with the
60 minutes recording, since that is the entire duration of every PCAP file.
The raw data can also be found in Appendix E.

7.1 File sizes of our recordings
Since we have been recording 20 different profiles for 10 times, we now have 200 PCAP files. If we
look at the file sizes of those 200 files, we can already observe remarkable patterns of interest.

Figure 20: File sizes clustered by profile

Figure 20 shows the file size of each PCAP file. The files have been clustered by profile, such that
each bar represents a repetition of that profile. For example, the yellow bar represents repetition
3 for each profile. Therefore, the yellow bar that appears above the number 0 represents the file
profile-0-repetition-3.pcap.
This graph reveals differences between the profiles in bar height. For example, the bars of profile 3
are significantly higher than those observed for profile 2. This means that the file sizes for the PCAPs
in profile 3 are greater than those in profile 2. In other words, the level of network traffic in profile 3
is significantly greater than that observed in profile 2. Apparently, the apps in profile 3 communicate
significantly more than the apps in profile 2. Another example is profile 19, that shows higher bars
than the rest of the profiles. Since this graph shows differences between profiles, that seem consistent
among the different repetitions of each profile, the file sizes seem to be the first indicator that we can
discover patterns in the LTE traffic that are specific to what apps are being used.

7.2 Using all 60 minutes of data from the PCAPs
Each PCAP file contains 60 minutes of recorded LTE network traffic. Using all of this network data,
we have attempted to derive what profile was used in each PCAP file. Since we have 200 PCAP files,

30

we will also have 200 classifications. The graph in figure 21 shows the number of correct classified
profiles out of those 200 PCAP files for each distance metric.

Figure 21: The amount of correctly classified profiles using different distance metrics (60 minutes of
data)

We see that dice, Jaccard, Russellrao and Sokalsneath could correctly classify 200 out of 200 profiles
(100%). Matching, Rogerstanimoto and Sokalmichener all classified 197 out of 200 profiles correctly
(98.5%), which means that only a small amount of 3 classifications were incorrect.

7.3 30 minutes of data
To analyze a recording of 30 minutes of LTE data, we can use part of the 60 minute PCAP files that
we already have. For example, we could take the first 30 minutes or the last 30 minutes (or something
in between). We did both, which is why the graph in figure 22 shows two bars for each distance metric.
The first bar shows the results when using the first 30 minutes of each PCAP (0-1800 seconds), while
the second bar represents the results when taking the last 30 minutes of each recording (1800-3600
seconds).

Figure 22: The amount of correctly classified profiles using different distance metrics (30 minutes of
data)

Figure 22 shows similar results for both time intervals while using Kulsinski and Russellrao. For
the other distance metrics, we observe a significant lower number of correct classifications when using
the last half hour in each PCAP as opposed to using the first half.

7.4 20 minutes of data
To see how well our attack performs with only 20 minutes of LTE data for each recording, we can
take a portion of 20 minutes from our 60 minutes recording. For example, we could take the first
20 minutes (0-1200 seconds), the last 20 minutes (2400-3600 seconds) or something in between (e.g.
1200-2400 seconds). We compare the results for each of those time intervals, while using different
distance metrics.

31

Figure 23: The amount of correctly classified profiles using different distance metrics (20 minutes of
data)

Again, we only observe an almost negligible decline in correct classifications for Kulsinski and
Russellrao and only when using the last 20 minutes of each recording. The other distance metrics
show a notable decrease in accurate classifications, already starting from the second time interval.

7.5 10 minutes of data
To see how well our attack performs on 10 minutes of recorded LTE data, we will take portions of
10 minutes from our 60 minute recordings. We will compare the performance of our attack for using
the first 10 minutes of each recording (0-600 seconds), the second 10 minutes (600-1200 seconds), the
third 10 minutes (1200-1800 seconds), the fourth 10 minutes (1800-2400 seconds), the fifth 10 minutes
(2400-3000 seconds) and the last 10 minutes (3000-3600 seconds). In the graph from figure 24, we omit
the data labels on top of each bar to improve readability. Although the primary focus of our analysis
is on differences in the bar heights, we refer to appendix E for the exact numerical values.

Figure 24: The amount of correctly classified profiles using different distance metrics (10 minutes of
data)

We observe a significant decreasing trend for all distance metrics, except Kulsinski. The amount
of correct classifications declines as our start time increases. However, this trend does not apply to
the latest 10 minutes of each recording, as we observe a higher last bar than the bar before for each
distance metric.

7.6 5 minutes of data
To use 5 minutes of recorded LTE data for our attack, we could divide our 60 minute recordings into
300 seconds time intervals. We can then compare the performance of those time intervals for each
distance metric.

While we can still observe a decreasing trend for later time intervals of 300 seconds, we can also spot
an increasing trend at the latest time intervals. This effect is more difficult to spot for Kulsinski and
Russellrao. Those two distance metrics outperform the other distance metrics again. They perform

32

Figure 25: The amount of correctly classified profiles using different distance metrics (5 minutes of
data)

almost equally, but appendix E reveals that Kulsinski does have one more correct classification than
Russellrao in the time intervals 1200-1500, 1500-1800 and 1800-2100.

7.7 1 minute of data
We can also take as little as one minute of data from each of our 60 minutes recordings and evaluate the
performance of our attack for only that one minute. If we do this for every minute in our recordings, we
can compare the number of correct classifications for each of those one minute time intervals, for each
distance metrics. For readability, we have omitted the legend of the graph, but each bar represents
a one minute time interval: 0-60 seconds, 60-120 seconds, 120-180 seconds, ..., 3480-3540 seconds or
3540-3600 seconds.

Figure 26: The amount of correctly classified profiles using different distance metrics (1 minute of
data)

While Kulsinski and Russellrao still have the highest number of correct classifications for each one
minute time interval, we see a significant decreasing trend for every one minute time interval in the first
half of our 60 minutes recording. In the second half, the numbers go up and down, but the trend is not
as clear. Kulsinski and Russellrao perform almost identical, except for the time intervals 1740-1800,
1800-1860 and 2340-2400 where Kulsinski performs slightly better.

8 Discussion
The results of this research show that it is possible to correctly classify the profile being used in
each PCAP file in 200 out of 200 cases (100%), when using 60 minutes of recorded LTE data. We also
observe that a reduction in recording time of LTE data is accompanied by a decline in the corresponding

33

success rate of our attack. We evaluated the success rate of a shorter recording time by only using
the data within a certain time interval and we observed that it depends on both the start time of the
time interval and the distance metric that we used. A later start time means that there is a greater
time difference between the moment that the profile was activated and the start of our recording.
We observed a negative correlation between this time difference and the success rate of our attack,
indicating that a larger time difference results in a lower success rate. If we look at the I/O graph of
any randomly chosen PCAP file in Wireshark, such as profile-14-repetition-3.pcap in figure 27,
we can see that that most data is being sent at the beginning of the PCAP.

Figure 27: The I/O graph of profile 14, repetition 3

The reason why this happens, is likely due to the fact that the beginning of each PCAP file is also the
moment that a profile has just been activated. This offers the apps in that profile the first opportunity
to synchronize their data with the servers they communicate with. This observed peak in data at
the beginning corresponds with our prediction from section 6.8.4 and could explain why a larger time
difference between the moment of profile activation and the start of our recording results in a lower
success rate: as more data is being sent at the beginning, we can use more data for our classification
when we choose a time interval closer to the moment that the profile was being activated. Since more
data leads to more distinctive patterns, we can better distinguish between different profiles.
However, in a real world scenario, it is unlikely that we can take into account when a profile has been
activated (e.g. when a user has turned on their phone) while recording LTE data. Therefore, we con-
sider time intervals further away from the moment of the profile activation to be more representative
for the results in a real world scenario where an attacker records passive LTE traffic.

Nevertheless, the results also reveal that we can reduce this effect of a declining success rate for
shorter time periods by choosing the right distance metric. Kulsinski performs best in all of our exper-
iments, followed by Russellrao. If we look at how Kulsinski performs for 30 minute, 20 minute and 10
minute recordings of LTE data, we notice that there is only one example for each of those durations
that result into 198/200 (99%) or 199/200 (99.5%) correct classifications. All of the other examples
still result into 200/200 (100%) correct classifications, regardless of which of these time duration was
used. If we only use 5 minutes of recorded LTE data for our attack, Kulsinski still manages to correctly
classify 196/200 (98%) in the worst case scenario (i.e. time interval 3000-3300 seconds). All of the
other 5 minute time intervals have a higher success rate and 50% of them even manage to still correctly
classify the profiles in all 200 recordings.
Finally, when using only 1 minute of recorded LTE data, we observe significant lower numbers of cor-
rect classifications for most time intervals, even while using Kulsinski. When we look at the amount of
correctly classified profiles for each one minute time interval for Kulsinski, we see an average of 171/200
(85%) and a median of 166/200 (83%). In the worst case scenario (time interval 3120-3180 seconds),
we can still correctly classify 142/200 (71%). This means that, while the success rate is significantly
lower than in our experiments where we used greater time intervals, the attack is still successful in the

34

majority of cases.

The attack setup that we used closely resembles the attacker scenario of an attacker using a fake base
station, as described section 2. Therefore, our achieved results show that it is possible for an attacker
to profile users based on the passive LTE traffic that the apps on their phone generate. This means
that if an attacker decides to execute this attack at multiple locations, he is able to recognize any
user that is connected to his fake base station at any location before. Based on that information, he
could compile a list of locations where he encountered this user. This constitutes a major violation of
privacy, as it allows an attacker to profile users by engaging in activities such as

• getting information about a persons location

• tracking users by creating logs of their location history

• deriving their interests from their location history

If this attack is being deployed at a wide range of locations, great amounts of data can be collected,
further increasing the chances of observing the same users at multiple locations. The hardware required
to do so, can be obtained relatively easily. While we used a USRP B205 mini-i with a laptop, an
attacker could also use the relatively inexpensive LimeSDR 2.0 mini together with a Raspberry Pi
SBC. The affordability of this hardware, coupled with the significant results we achieved in this attack,
substantiates the feasibility of this attack. Even though the results for 1 minute time intervals are
significantly lower than the results we observed for greater time intervals, this is still a great cause for
concern, given the short amount of recording time to achieve these results. Any recording time added
to this 1 minute, will already result in an even higher success rate for the attack, quickly approaching
the 100%. This unveils the pressing need to take appropriate steps by involved parties, in order to
mitigate the risk of falling victim to this attack.

8.1 Detection of our attack
Our attack consists of two phases: capturing the LTE network traffic and performing the analysis on
the data. Since the analysis of the intercepted traffic can be done offline, the possibility of detecting
the attack is during the recording phase. We eavesdrop using a fake base station to set up a MitM
between the connected users and the legitimate eNodeB. Therefore, detection of our attack is similar
the detection of fake LTE base stations in general. We refer to the existing body of research on that
topic. Examples of the various detection methods that are already available include but are not limited
to:

• Monitoring abnormalities in signal strength [18, 21]

• Machine Learning techniques based on Reference Signal Received Power (RSRP) [20]

• Synchronization of network names of legitimate base stations with the UE [19]

• Sample-based higher order noise statistics [22]

• Network-based detection [23]

While these methods are available and some of them (e.g. the last one) are already adopted by
the 3GPP standardization organization, detecting a fake base station can still be challenging task
and should therefore not be solely relied on as a countermeasure. Therefore, we present additional
countermeasures below.

8.2 Countermeasures
Since our attack relies on the ability to extract IP addresses from the intercepted network traffic, a
straightforward countermeasure would be to encourage the usage of Virtual Private Networks (VPNs)
among mobile network users. Since a VPN reroutes all traffic to a VPN server, an attacker with a
malicious eNodeB would only see the IP addresses of the VPN server and the user. As a result, the

35

conversion of the IP addresses to AS numbers will only result in AS numbers that belong to the VPN,
which renders it impossible to distinguish different profiles based on their (dis)similarity of AS numbers.
While our attack unveils a substantial threat to privacy, VPNs are a practical and accessible solution,
given their wide available and the simplicity of their setup. Therefore, it is important to raise awareness
of both the feasibility of this attack and the accessibility of its corresponding solution by promoting
the usage of VPNs among mobile network users. However, the usage of a VPN or similar services can
also introduce new privacy hazards. While a VPN provider can protect users against attackers using
a malicious base station, the VPN server itself could act as a malicious base station as well. Since all
traffic is routed throught the VPN server, this enables the VPN provider to perform the same attack
as the one it claims to protect the user from. In that case, a VPN is not a protection mechanism, but
a means to facilitate the actual attack. Therefore, encouraging users to choose a trusted VPN party
is of equal importance. In that light, a user might consider using a VPN from a party with whom
they are already sharing their data, such as their phone manufacturer (e.g. Google VPN or Apple
Relay). They could also decide to make use of similar solutions, such as proxy servers and Tor, but
these solutions should also be approached with the same caution. While the possibility of our attack
is dependent on the ability to extract IP addresses from the network traffic, it is important to realize
that an attacker might consider implementing this attack in a slightly different way by extracting other
data than IP addresses from the network traffic. In that case, the usage of a VPN like service is not
an effective remedy for the attack. This makes it important to remain vigilant and cognizant about
potential variations of the attack, in the event that they are being deployed. This enables remaining
receptive to investigating alternative countermeasures, depending on what data the attacker extracts.
Using end-to-end encryption on the IP layer such as IPsec is generally recommended, but only if being
be used in tunnel mode in order to hide the IP addresses.

8.3 Other limitations and future research
While the results of this research provide valuable insights, it is important to also acknowledge other
limitations besides the earlier mentioned accessible mitigation methods. For example, the limitation
of using IP addresses from the PCAP files forces us to assume that the attacker has access to the IP
layer of packet and therefore also to the PDCP layer. This implies that the packets are not encrypted,
and thus this attack is not performed as a passive sniffer, as that would require to break the encryption
first. To make up for this, the attacker acts as a MitM using a rogue base station, which allows him
to see the unencrypted packets. However, it is worth noting that this approach requires more effort,
as it involves the creation of a custom base station and active meddling with users by tricking them to
connect to it. Therefore, it would be a good idea for future research to focus on different parameters
than IP addresses, to investigate whether this attack could also be performed as a passive sniffer. This
could amplify the impact and dangers of the attack even further.
Another problem could be the fact that we presume the profiles to be static. As profiles consist of a
selection of apps, this assumption translates to disregarding the fact that users will keep adding and
removing apps through time. In this research, we show that different sets of apps lead to different traffic
patterns, allowing us to distinguish profiles. Consequently, if the apps inside a profile itself change,
it will also lead to different traffic patterns and therefore become a different profile. Moreover, apps
themselves are constantly being updated. This potentially leads to different requests with other AS
numbers, which might also influence traffic patterns. As this gives profiles more dynamic and evolving
characteristics, it is likely that concept drift will influence our ability to identify users, particularly
when comparing new versions of profiles to old profile data. This highlights the importance of regularly
updating the dataset in order to mitigate the impact of concept drift and remain the attack’s accuracy
over time.
Another issue to consider is the costs of the SDR. The SDR that we are using is currently being
listed for $1,571.00 [33]. A company exploiting our attack (e.g. a mobile service provider) might not
be financially prohibited by this, but a typical teenage hacker is unlikely to have sufficient financial
means. For an individual falling into this last category, it might be more realistic to purchase the more
cost-effective LimeSDR 2.0 mini, currently being listed for $399 [56], but only if the attack is being
performed at one location at a time. Deploying this attack at multiple locations simultaneously would
require to place such an SDR at each of those locations, all adding up to an impractical total costs.
This, while being limited to one location at a time might significantly reduce the feasibility of the
attack, depending on its purpose. Performing this attack as a passive sniffer rather than using a fake

36

base station (as suggested earlier) is not a solution for this unaffordability either, as passive sniffing is
often also done using SDRs.
The scalability of the set up in general might also be limited apart from the costs, due to our analysis
method. In our analysis, we demonstrate the feasibility of recognizing the profile in a PCAP file, based
on its similarity with every other PCAP files. This method is feasible within our lab environment,
due to the fact that our setup is a simplification of a real-world scenario. In our a closed world,
20-class problem, we only use 200 PCAP files. However, in a real-world scenario where the attack is
being applied on a large scale, there will be significantly greater amounts of data, rendering pairwise
comparison with all other recordings impracticable. Moreover, the attacker would need to cope with
millions of profiles. In that case, different methods should be applied to determine the ASN-based
similarity with other PCAP files. For example, Machine Learning (ML) classification techniques could
be used to train the ASN vectors for each profile and then predict the profile of any new recording
based on its ASN vector. We leave the implementation of such alternative comparison techniques to
future work.

8.4 5G
While our attack focuses on LTE, it is important to note that its applicability is likely to extend to
5G as well, due to both the architectural similarities between both protocols and the principle of our
attack. In our attack, we demonstrate that the traffic generated by apps is very specific for the apps
that are used. Based on the 5G specifications [57] and its similarity with LTE, we do not have reasons
to assume that this concept will be affected by any differences between the protocols. However, it
is not unlikely that changes in the 5G protocol impact the attacker’s ability to intercept the mobile
network traffic. This is because of the enhanced protection mechanisms against IMSI catchers in 5G,
which may introduce challenges in setting up a fake base station. Examples of such mechanisms include
the Elliptic Curve Integrated Encryption Scheme (ECIES) and SUPI concealment, guaranteed GUTI
refreshment, protected redirections, a general informative detection framework, authentication between
UE and network, integrity protected signalling and secure algorithm negotiations [58]. Nonetheless,
it is not impossible [59, 60, 61]. Alternatively, as suggested earlier, an attacker could explore the
possibilities of extracting different data from the network traffic, which does not rely on the fact that
the traffic is not encrypted. This would allow an attacker to perform the attack as a passive sniffer,
eliminating the need to set up a fake base station and thereby circumventing the enhanced security
mechanisms. For example, an attacker could focus on metadata of encrypted mobile network traffic,
similar to e.g. [1] or [5].
While our findings together with these suggestions strongly indicate that 5G is not immune to our
attack, we leave the exact implementation of a 5G compatible version of our attack to future work.
It is also important to note that, even if an attacker seems unsuccessful in using this attack in 5G, he
might still be able to deploy a downgrade attack [62] in spite of 5G’s lack of backwards compatibility.
This will force the user to connect to the fake base station using LTE, making them vulnerable to the
attack despite their 5G subscription.

9 Conclusion
In this thesis, we explored the possibility of using passive LTE network traffic as a way to fingerprint
mobile users in order to track them. We described the attack in a real world scenario and then
demonstrated how we created an experimental set up. We generated 20 profiles that each simulated
mobile users with a different set of apps installed, who are not actively using their phone. We then
recorded the resulting network traffic of each of those profiles 10 times, for 1 hour per recording,
resulting in a total of 200 hours of recorded network traffic. The objective of this study was to
evaluate the effectiveness of an attack in which we attempt to derive the profile that was being used
in each of those recordings by comparing the similarity with the other recordings. In order to compare
the recordings, we created "ASN vectors" for each of the recordings, based on the IP addresses that we
found. We evaluated the attacks for different distance metrics and different durations. The distance
metric Kulsinski performed best for all durations, followed by Russellrao. We discovered that we could
correctly derive the profile that was being used in all 200 recordings when using the entire hour of
recorded data in each PCAP file. To examine the success rate of our attack with a shorter recording

37

time, we used part of the 1 hour recordings we already had. We noticed that the success rate depends
on which part we used. It decreased as we picked a later start time for the time interval that we
extracted from each PCAP file. However, by using Kulsinski we could still derive the correct profile
for at least 98% of the profiles while using only 5 minutes of data. This was in the worst performing
example, while all other examples have higher scores, especially for the longer time intervals. For
each time intervals longer than 5 minutes, we could only find one example that did not result in
correctly classifying 100% of the profiles. For 1 minute time intervals, we saw a success rate of 85%
on average and 71% in the worst case scenario. In a real world scenario, this translates to an attacker
using a malicious eNodeB that only requires users to be connected for 60 seconds in order to achieve
those results. Any additional time that users will stay connected, will result into significantly higher
success rates, allowing the attacker to track users at multiple locations. This is a major privacy
concern, especially if being applied at large scale. We proposed possible countermeasures, such as
increasing awareness, encouraging VPN usage and the detection of fake base stations. While these
countermeasures provide valuable mitigation tactics, it is crucial to understand that these tactics are
not immune to circumvention due to their inherent limitations. They should therefore be approached
with caution. This also applies to 5G, whose susceptibility to our attack is strongly indicated by the
architectural similarities it shares with LTE and the potential for bypassing any enhanced security
measures. It is important to stay vigilant of potential variants of the attack that do not rely on the
ability to extract IP addresses, as this would allow an attacker to perform the attack as passive sniffer,
making it even more feasible to deploy. Future research is needed to examine the possibility of such
variants, as well as to explore additional countermeasures for the attack.

References
[1] Kohls, Katharina, et al. "Lost traffic encryption: fingerprinting lte/4g traffic on layer two." Pro-

ceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks. 2019.

[2] Gijón, Carolina, et al. "Encrypted Traffic Classification Based on Unsupervised Learning in Cellular
Radio Access Networks." IEEE Access 8 (2020): 167252-167263.

[3] Espinal, Albert, Rebeca Estrada, and Carlos Monsalve. "Traffic analysis of internet applications
on mobile devices over LTE and wireless networks." Revista Ibérica de Sistemas e Tecnologias de
Informação E22 (2019): 81-94.

[4] Trinh, Hoang Duy, et al. "Mobile Traffic Classification through Physical Control Channel Finger-
printing: a Deep Learning Approach." IEEE Transactions on Network and Service Management
(2020).

[5] L. Zhai, Z. Qiao, Z. Wang and D. Wei, "Identify What You are Doing: Smartphone Apps Finger-
printing on Cellular Network Traffic," 2021 IEEE Symposium on Computers and Communications
(ISCC), 2021, pp. 1-7, doi: 10.1109/ISCC53001.2021.9631415.

[6] APP ANNIE. "State of Mobile 2020." Data.ai, accessed 14 March 2023. www.data.ai/download/
en/insights/market-data/state-of-mobile-2020/2001_State_of_Mobile_2020_Main_EN.
pdf

[7] Lexi Sydow and Sam Cheney. "2017 Retrospective: A Monumental Year for the
App Economy." Data.ai, accessed 14 March 2023. www.data.ai/en/insights/market-data/
app-annie-2017-retrospective/

[8] Holtmanns, Silke, Siddharth Prakash Rao, and Ian Oliver. "User location tracking attacks for LTE
networks using the interworking functionality." 2016 IFIP Networking conference (IFIP Networking)
and workshops. IEEE, 2016.

[9] Trogh, Jens, et al. "Outdoor location tracking of mobile devices in cellular networks." EURASIP
Journal on Wireless Communications and Networking 2019.1 (2019): 1-18.

[10] Margolies, Robert, et al. "Can you find me now? Evaluation of network-based localization in a
4G LTE network." IEEE INFOCOM 2017-IEEE Conference on Computer Communications. IEEE,
2017.

38

www.data.ai/download/en/insights/market-data/state-of-mobile-2020/2001_State_of_Mobile_2020_Main_EN.pdf
www.data.ai/download/en/insights/market-data/state-of-mobile-2020/2001_State_of_Mobile_2020_Main_EN.pdf
www.data.ai/download/en/insights/market-data/state-of-mobile-2020/2001_State_of_Mobile_2020_Main_EN.pdf
www.data.ai/en/insights/market-data/app-annie-2017-retrospective/
www.data.ai/en/insights/market-data/app-annie-2017-retrospective/

[11] Ni, Lei, et al. "Accurate localization using LTE signaling data." 2017 IEEE International Confer-
ence on Computer and Information Technology (CIT). IEEE, 2017.

[12] Ye, Xiaokang, et al. "Neural-network-assisted UE localization using radio-channel fingerprints in
LTE networks." Ieee Access 5 (2017): 12071-12087.

[13] Shaik, Altaf, et al. "Practical attacks against privacy and availability in 4G/LTE mobile commu-
nication systems." arXiv preprint arXiv:1510.07563 (2015).

[14] Yu, Chuan, Shuhui Chen, and Zhiping Cai. "Lte phone number catcher: A practical attack against
mobile privacy." Security and Communication Networks 2019 (2019): 1-10.

[15] Mjølsnes, Stig F., and Ruxandra F. Olimid. "Easy 4G/LTE IMSI catchers for non-programmers."
Computer Network Security: 7th International Conference on Mathematical Methods, Models, and
Architectures for Computer Network Security, MMM-ACNS 2017, Warsaw, Poland, August 28-30,
2017, Proceedings 7. Springer International Publishing, 2017.

[16] Van Rijsbergen, Kenneth. "The effectiveness of a homemade IMSI catcher build with YateBTS
and a BladeRF." University of Amsterdam 28 (2016).

[17] Redactie Prisewise. "Nederlander hamstert massaal mobiele telefoons." Pricewise.nl, 1 july 2021.
https://www.pricewise.nl/blog/nederlander-hamstert-massaal-mobieltjes/

[18] Quintin, Cooper. "Detecting Fake 4G LTE Base Stations in Real Time." (2021).

[19] Al Mazroa, Alanoud, and Mohammed Arozullah. "Securing the user equipment (UE) in LTE
networks by detecting fake base stations." (2015).

[20] Nakarmi, Prajwol Kumar, Jakob Sternby, and Ikram Ullah. "Applying Machine Learning on
RSRP-based Features for False Base Station Detection." Proceedings of the 17th International Con-
ference on Availability, Reliability and Security. 2022.

[21] Ali, Arslan, and Georg Fischer. "Symbol based statistical RF fingerprinting for fake base station
identification." 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA).
IEEE, 2019.

[22] Ali, Arslan, and Georg Fischer. "Enabling fake base station detection through sample-based higher
order noise statistics." 2019 42nd International Conference on Telecommunications and Signal Pro-
cessing (TSP). IEEE, 2019.

[23] Nakarmi, Prajwol Kumar, et al. "Murat: Multi-RAT false base station detector." arXiv preprint
arXiv:2102.08780 (2021).

[24] Roger Piqueras Jover. 2016. LTE Security, Protocol Exploits and Location Tracking Ex-
perimentation with Low-Cost Software Radio. arXiv (1607.05171) (2016). arXiv:1607.05171
http://arxiv.org/abs/1607.05171

[25] Altaf Shaik, Ravishankar Borgaonkar, N. Asokan, Valtteri Niemi, and Jean-Pierre Seifert. 2016.
Practical Attacks Against Privacy and Availability in 4G/LTE Mobile Communication Systems. In
Network and Distributed System Security Symposium (NDSS ’16). Internet Society, San Diego, CA,
USA

[26] FarhanF M. Aziz, Jeff S. Shamma, and Gordon L. Stüber. 2015. Resilience of LTE Networks
Against Smart Jamming Attacks: Wideband Model. In Annual International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIMRC ’15). IEEE, Hong Kong, China, 1344–1348

[27] Roger Piqueras Jover. 2013. Security Attacks Against the Availability of LTE Mobility Networks:
Overview and Research Directions. In International Symposium on Wireless Personal Multimedia
Communications (WPMC ’13). IEEE, Atlantic City, NJ, USA

[28] Marc Lichtman, Roger Piqueras Jover, Mina Labib, Raghunandan Rao, Vuk Marojevic, and
Jeffrey H. Reed. 2016. LTE/LTE-A Jamming, Spoofing, and Sniffing: Threat Assessment and Mit-
igation. IEEE Communications Magazine 54, 4 (April 2016), 54–61.

39

https://www.pricewise.nl/blog/nederlander-hamstert-massaal-mobieltjes/

[29] Marc Lichtman, Jeffrey H. Reed, T. Charles Clancy, and Mark Norton. 2013. Vulnerability of LTE
to Hostile Interference. In IEEE Global Conference on Signal and Information Processing (GlobalSIP
’13). IEEE, Austin, TX, USA, 285–288.

[30] R. Ghannam, F. Sharevski and A. Chung, "User-targeted Denial-of-Service Attacks in LTE Mobile
Networks," 2018 14th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Limassol, Cyprus, 2018, pp. 1-8, doi: 10.1109/WiMOB.2018.8589140.

[31] Fei, Teng, and Wenye Wang. "LTE is vulnerable: Implementing identity spoofing and denial-of-
service attacks in LTE networks." 2019 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2019.

[32] Jermyn, Jill, Gabriel Salles-Loustau, and Saman Zonouz. "An analysis of dos attack strategies
against the lte ran." Journal of Cyber Security and Mobility (2014): 159-180.

[33] Ettus Research. "USRP B205mini-i." Ettus.com, accessed 9 February 2023. https://www.ettus.
com/all-products/usrp-b205mini-i/

[34] Xiaomi. "POCO F2 Pro." Mi.com, accessed 9 February 2023. https://www.mi.com/nl/
poco-f2-pro/

[35] Sysmocom. "sysmoISIM-SJA2 SIM + USIM + ISIM Card (10-pack) with ADM
keys." Sysmocom.de, accessed 10 February 2023. https://shop.sysmocom.de/
sysmoISIM-SJA2-SIM-USIM-ISIM-Card-10-pack-with-ADM-keys/sysmoISIM-SJA2-10p-adm

[36] HID. "HID OMNIKEY 3121." Hidglobal.com, accessed 10 February 2023. https://www.
hidglobal.com/products/omnikey-3121

[37] Osmocom. "Osmocom/pysim: A python tool to program SIMs / USIMs / ISIMs." Github, accessed
10 February 2023. https://github.com/osmocom/pysim

[38] openLTE Wiki, bwojtowi and dchard. "Programming you own USIM card." Sourceforge,
accessed 29 February 2023. https://sourceforge.net/p/openlte/wiki/Programming%20you%
20own%20USIM%20card/

[39] srsRAN Project. "Open Source RAN." srsRAN.com, accessed 9 February 2023. https://www.
srsran.com/

[40] Ettus Research. "UHD (USRP Hardware Driver™)." Ettus.com, accessed 10 February 2023.
https://www.ettus.com/sdr-software/uhd-usrp-hardware-driver/

[41] Ettus Research. "USRP Hardware Driver and USRP Manual." Ettus.com, accessed 10 February
2023. https://files.ettus.com/manual/page_install.html

[42] srsRAN Project. "Installation Guide - srsRAN 4G 23.04 documentation." srsRAN.com, ac-
cessed 12 February 2023. https://docs.srsran.com/projects/4g/en/latest/general/source/
1_installation.html

[43] srsRAN Project. "COTS UE - srsRAN 4G 23.04 documentation." srsRAN.com, accessed 12
February 2023. https://docs.srsran.com/projects/4g/en/latest/app_notes/source/cots_
ue/source/index.html

[44] AndroidRank. "Most installed android apps." Androidrank.org, accessed 13 September 2022.
https://www.androidrank.org/applist.csv

[45] Google. "Android Debug Bridge (adb)." developers.android.com, accessed 11 June 2023. https:
//developer.android.com/tools/adb

[46] Tim Wijkman-van Aalst. "We moeten nog minimaal een jaar wachten
op het échte 5G." NU.nl, 26 May 2023. https://www.nu.nl/tech/6264962/
we-moeten-nog-minimaal-een-jaar-wachten-op-het-echte-5g.html

40

https://www.ettus.com/all-products/usrp-b205mini-i/
https://www.ettus.com/all-products/usrp-b205mini-i/
https://www.mi.com/nl/poco-f2-pro/
https://www.mi.com/nl/poco-f2-pro/
https://shop.sysmocom.de/sysmoISIM-SJA2-SIM-USIM-ISIM-Card-10-pack-with-ADM-keys/sysmoISIM-SJA2-10p-adm
https://shop.sysmocom.de/sysmoISIM-SJA2-SIM-USIM-ISIM-Card-10-pack-with-ADM-keys/sysmoISIM-SJA2-10p-adm
https://www.hidglobal.com/products/omnikey-3121
https://www.hidglobal.com/products/omnikey-3121
https://github.com/osmocom/pysim
https://sourceforge.net/p/openlte/wiki/Programming%20you%20own%20USIM%20card/
https://sourceforge.net/p/openlte/wiki/Programming%20you%20own%20USIM%20card/
https://www.srsran.com/
https://www.srsran.com/
https://www.ettus.com/sdr-software/uhd-usrp-hardware-driver/
https://files.ettus.com/manual/page_install.html
https://docs.srsran.com/projects/4g/en/latest/general/source/1_installation.html
https://docs.srsran.com/projects/4g/en/latest/general/source/1_installation.html
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/cots_ue/source/index.html
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/cots_ue/source/index.html
https://www.androidrank.org/applist.csv
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://www.nu.nl/tech/6264962/we-moeten-nog-minimaal-een-jaar-wachten-op-het-echte-5g.html
https://www.nu.nl/tech/6264962/we-moeten-nog-minimaal-een-jaar-wachten-op-het-echte-5g.html

[47] Vadim Mikhailov. "GitHub - mvp/uhubctl: uhubctl - USB hub per-port power control." Github,
accessed 16 March 2023. https://github.com/mvp/uhubctl

[48] Google. "Manifest.permission." developers.android.com, accessed 14 March 2023. https://
developer.android.com/reference/android/Manifest.permission

[49] Longsworth, Ralph C., and WILLIAM A. Steyert. "Technology for liquid-nitrogen-cooled com-
puters." IEEE transactions on electron devices 34.1 (1987): 4-7.

[50] Scapy. "Welcome to Scapy’s documentation!." readthedocs.io, accessed 27 October 2021. https:
//scapy.readthedocs.io/en/latest/

[51] Wireshark. "tshark(1) Manual Page." Wireshark.org, accessed 5 November 2021. https://www.
wireshark.org/docs/man-pages/tshark.html

[52] Piotr (pgawlowicz). "srsRAN_4G/enb.conf.example at master · srsran/srsRAN_4G · GitHub."
Github, 6 April 2023. https://github.com/srsran/srsRAN_4G/blob/master/srsenb/enb.conf.
example

[53] Pypi. "MaxMind GeoIP2 API." Pypi.org, accessed 26 April 2023. https://pypi.org/project/
geoip2/

[54] Maxmind. "GeoLite2 ASN Database." Maxmind.com, accessed 26 April 2023. https://dev.
maxmind.com/geoip/docs/databases/asn

[55] Scikit Learn. "sklearn.neighbors.DistanceMetric." Scikit-learn.org, accessed 5 January 2023.
https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.DistanceMetric.
html

[56] Lime Microsystems. "LimeSDR Mini 2.0." CrowdSupply, accessed 2 June 2023. https://www.
crowdsupply.com/lime-micro/limesdr-mini-2#products

[57] 3GPP. "5G System Overview." 3GPP.org, accessed 5 June 2023. https://www.3gpp.org/
technologies/5g-system-overview

[58] 3GPP. Specification # 33.809: Study on 5G security enhancements against False Base Stations
(FBS) (2018)

[59] Chlosta, Merlin, et al. "5G SUCI-Catchers: Still catching them all?." Proceedings of the 14th
ACM Conference on Security and Privacy in Wireless and Mobile Networks. 2021.

[60] Lee, Meng Huan, I-Hsien Liu, and Jung Shian Li. "Fake Base Station Threats in 5G Non-Public
Networks." 28th International Conference on Artificial Life and Robotics, ICAROB 2023. ALife
Robotics Corporation Ltd, 2023.

[61] Ali, Hamza, et al. "Protecting IMSI from Fake Base Stations Exploitation and Spoofers Imper-
sonation in 5G and Beyond Cellular Networks." (2022).

[62] Khan, Mohsin, et al. "Defeating the downgrade attack on identity privacy in 5G." Security Stan-
dardisation Research: 4th International Conference, SSR 2018, Darmstadt, Germany, November
26-27, 2018, Proceedings 4. Springer International Publishing, 2018.

[63] Scikit. "Metrics: _dist_metrics.pyx.tp." Github, accessed 18 June 2023. https://github.com/
scikit-learn/scikit-learn/blob/main/sklearn/metrics/_dist_metrics.pyx.tp

[64] Harris, David and Harris, Sarah (2012-08-07). Digital design and computer architecture (2nd ed.).
San Francisco, Calif.: Morgan Kaufmann. p. 129. ISBN 978-0-12-394424-5.

41

https://github.com/mvp/uhubctl
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://github.com/srsran/srsRAN_4G/blob/master/srsenb/enb.conf.example
https://github.com/srsran/srsRAN_4G/blob/master/srsenb/enb.conf.example
https://pypi.org/project/geoip2/
https://pypi.org/project/geoip2/
https://dev.maxmind.com/geoip/docs/databases/asn
https://dev.maxmind.com/geoip/docs/databases/asn
https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.DistanceMetric.html
https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.DistanceMetric.html
https://www.crowdsupply.com/lime-micro/limesdr-mini-2#products
https://www.crowdsupply.com/lime-micro/limesdr-mini-2#products
https://www.3gpp.org/technologies/5g-system-overview
https://www.3gpp.org/technologies/5g-system-overview
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/metrics/_dist_metrics.pyx.tp
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/metrics/_dist_metrics.pyx.tp

A Code samples for the research setup

A.1 Simplified apps installation script
We present a simplified example of an installation script below. This script offers a way to automate
the installation of the 500 apps through the Google Play store.

1 #Function that can execute system calls
2 def systemCmd(commandstr):
3 output = subprocess.check_output(commandstr , shell=True , stderr=subprocess.STDOUT)
4 return output
5

6 #Emulates a tap of the user at the provided coordinates
7 def tap(coordinates):
8 x, y = coordinates
9 tapstring = "adb shell input tap " + str(x) + " " + str(y)

10 systemCmd(tapstring)
11

12 #Opens a specific app in the Google Play store , using the provided packagename
13 def openAppInPlayStoreByPackageName(packagename):
14 commandstr = "adb shell am start -a android.intent.action.VIEW -d ’market ://

details?id=" + packagename + "’"
15 systemCmd(commandstr)
16

17 #Gets the coordinates of a button , based on a string
18 def getButtonPosition(buttontext):
19 #Based on https :// stackoverflow.com/questions /18924968/ using -adb -to -access -a-

particular -ui -control -on -the -screen
20

21 #Create a view
22 errorhider = " 2>/dev/null" if not displayerrors else ""
23 cmd1 = "adb pull \$(adb shell uiautomator dump" + errorhider + " | grep -oP ’[^

]+. xml ’) /tmp/view.xml"
24

25 #Get position of button based on text of the button
26 cmd2 = "perl -ne ’printf \"%d %d\n\", ($1+$3)/2, ($2+$4)/2 if /text =\"" +

buttontext + "\"[^ >]* bounds =\"\[(\d+) ,(\d+) \]\[(\d+) ,(\d+)\]\"/’ /tmp/view.xml"
27

28 systemCmd(cmd1)
29 time.sleep (1)
30 position = systemCmd(cmd2)
31

32 return position.decode ()
33

34 #Installs the app that is provided by the packagename
35 def installapp(packagename):
36 openAppInPlayStoreByPackageName(packagename)
37 time.sleep (1)
38

39 #Find the coordinates of the install button on the Play Store page
40 buttonpos = getButtonPosition("Install")
41

42 #Hit that button
43 tap(buttonpos.split(’ ’))

Listing 3: Python example to automate app installation

A.2 Code to verify phone connection status
The Python function below returns 0 if the phone is connected and 1 if the phone is not connected.

1 def getServiceState ():
2 #Execute the adb command to get the status and save its output into the temp

variable
3 temp = systemCmd("adb shell dumpsys telephony.registry | grep -i -o ’{\

textbackslash}smDataRegState =.’")
4

5 ’’’

42

6 Temp now contains multiple lines of "mDataRegState =..." strings and also one empty
line (the last line , line [-1])

7 The line above that (line [-2]) is the only relevant line , as it gives us the most
recent status.

8 So now we extract that line:’’’
9 lateststatus = temp.decode(’utf -8’).split(’\n’)[-2]

10 #Now we only need the last digit:
11 return int(lateststatus [-1])

Listing 4: Python example to retrieve the phone’s connection state

A.3 Code to end srsRAN
The code below gets the right process identifier (PID) for an ongoing process. This can be used to end
that process.

1 def getPid(programkeyword):
2 #Execute the system command to list processes that match the programkeyword
3 commandstr = "sudo ps -aux | grep " + programkeyword
4 output = systemCmd(commandstr).decode ()
5

6 #Print the output , i.e. the list of programs matching the programkeyword
7 print("Overview of processes matching ’", programkeyword , "’:")
8 print(output)
9 print("=====================")

10

11 #Turn the output into a list
12 processlist = output.split(’\n’)
13

14 pid = -1
15

16 #For all items in that processlist
17 for i in range(len(processlist)):
18 #Split that item into another list
19 splitline = processlist[i].split(" ")
20 #Remove empty strings from list
21 splitline = list(filter(None , splitline))
22

23 #If the item itself is not empty
24 if(len(splitline) != 0):
25 #If this is the item satisfying our criteria , print its list
26 if(splitline [0] == ’root’ and splitline [-5] == ’S+’ and splitline [-1] ==

programkeyword and splitline [-2] != "grep" and splitline [-2] != "--color=auto"):
27 #Print it
28 print(splitline)
29 #The pid is the second element in the list of this item
30 pid = int(splitline [1])
31 return pid
32

33

34 print("The pid that we need is:", getPid("srsepc"))

Listing 5: Retrieving the pid of the process that we need to kill

Using this code, we can create the Python code to kill srsRAN:

1 def killprogram(programkeyword):
2 pid = getPid(programkeyword)
3 commandstr = "kill " + str(pid)
4 print("Killing process ", str(pid))
5 print(systemCmd(commandstr))
6

7 def killsrsRAN ():
8 print("Killing srsenb ...")
9 killprogram("srsenb")

10 time.sleep (5)
11 print("Killing srsepc ...")

43

12 killprogram("srsepc")
13

14 killsrsRAN ()

Listing 6: Killing srsRAN

44

B Setting the app permissions
Granting an app all of its permissions can be done during the installation of an app using the following
command in adb:

adb install -g [apk file]
Here, [apk file] is the filename of an apk file of an Android app, located on a computer.
In our case, we have already installed the apps, which we wanted to do through the Play Store (see
Appendix A.1) rather than through apk files. Therefore, we need another approach to still be able to
grant each app the permissions it wants. Here is how we proceed:

1. Download all of the installed apps to our computer
We iterate over our list of package names of the 500 apps that we already installed. For each
package name, we do the following:

(a) Find the paths of apk files that belong to the app on the phone:
adb shell pm path [package name]

(b) For each path to an apk that we found, download that apk from the phone to the computer:
adb pull [path on the phone to that apk] [path to some folder on a computer]
Now all of the apk files that belong to the app are downloaded to a folder on the computer.
To organize the apk files into folders that represent the different apps, it is advisable to
execute these commands in a script. A Python script, for example, could create subfolders
on the computer with the right names, based on the path of the apk files.

2. Create a list with permissions for each app
First, we create a list with all android permissions that an app could ask for. We can use [48]
as a reference. Now, for all of the apk files that we downloaded on the computer, we do the
following:

(a) Execute this command to view the permissions that it wants:
1 output = systemCmd("aapt d permissions \"" + apkfile + "\"")

(b) Extract the permissions from the output of the previous command using a regex:

1 regex_perm = "name=’android.permission .([^ ’]*)’"
2 permissions = re.findall(regex_perm , output.decode ())

We now have a Python list for the apk file with the permissions that it wants.

(c) For each permission in this list, we now discover the index of that same permission in the list
of all of the android permissions (that we created earlier). We then have a list of indexes,
that represent the permissions that this apk file wants.
This means that we can now create the following two-element list:
[package name of the apk file], [indexes of permissions]

(d) We then add this entry to another list called packagenames_and_permissions. However, it
is possible that there is already an entry in this list with the same package name, as the
same app can have multiple apk files. In that case, we append any additional indexes to
that already existing entry instead.

Once we have iterated over all apk files and the permissions that they desire, we end up with a
list that looks like this:

1 packagenames_and_permissions = [[’com.yodo1.crossyroad ’, [0, 1, 2, 3, 4, 4, 5,
6, 7]], [’in.swiggy.android ’, [0, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2, 13,

14, 15, 16, 17, 18, 19, 20, 21, 1]], [’com.weather.Weather ’, [0, 20, 8, 22, 3,
4, 6, 17, 23, 5, 7]], [’com.ForgeGames.SpecialForcesGroup2 ’, [0, 1, 3, 5, 4,

15, 17, 2, 14, 20, 8]], [’com.tencent.mm’, [24, 25, 3, 20, 8, 19, 26, 0, 15,
6, 14, 18, 17, 5, 1, 27, 28, 29, 13, 30, 31, 16, 32, 33, 34, 35, 4, 7, 2, 36,
37, 38, 39, 40]], [’com.supercell.brawlstars ’, [0, 3, 5, 30, 4, 17, 41, 1, 2,
19, 7]], [’com.ss.android.ugc.trill’, [20, 13, 42, 0, 3, 2, 1, 4, 19, 14, 43,
5, 26, 18, 6, 17, 27, 44, 45, 46, 7, 47, 48, 49, 25, 50, 15, 51, 52, 24]], [’

45

com.netflix.mediaclient ’, [3, 4, 27, 24, 0, 5, 14, 15, 1, 7, 50, 7]], [’com.
matchington.mansion ’, [0, 4, 3, 2, 1, 5, 6, 7, 53]], [’com.microsoft.office.
outlook ’, [0, 1, 3, 17, 10, 54, 18, 44, 45, 55, 46, 56, 49, 57, 58, 8, 20, 5,
48, 19, 42, 2, 59, 14, 38, 37, 6, 7, 15, 51]], [’com.FDGEntertainment.redball4
.gp’, [0, 3, 5, 4, 1]], ..., [’com.google.android.apps.youtube.music’, [3, 4,
27, 28, 0, 32, 130, 2, 1, 8, 13, 17, 5, 10, 55, 23, 7, 53, 6, 14]], [’com.
nianticlabs.pokemongo ’, [17, 27, 28, 8, 7, 2, 1, 0, 10, 23, 3, 5, 4, 19, 38,
37, 6, 22, 34, 21, 18, 20]], [’com.amazon.kindle ’, [21, 5, 3, 4, 0, 1, 46, 55,
23, 7, 26, 29, 2, 27, 107, 50, 106, 8, 20, 28, 6, 83, 16, 30]], [’com.google.

android.music’, [0]]]

This is just an example showing the permissions for 15 apps. But given the fact that we have
installed 500 apps, the actual list is considerably more extensive.

3. We now grant each app the permissions it wants
Now that we know what permissions each app wants, we can grant them to the apps on the
phone. Granting an app permissions can be done as follows:

1 def grantPermission(packagename , permission):
2 commandstr = "adb shell pm grant " + packagename + " android.permission."

+ permission
3 systemCmd(commandstr)
4

5 def grantPermissions(packagename , permissions):
6 for permission in permissions:
7 grantPermission(packagename , permission)
8

We can now iterate over the packagenames_and_permissions list. For every entry in that list:

(a) We can convert the indexes in this entry to strings. For each index, we look at the string
at that index in the list of all android permissions.

(b) With the package name and a list of the permissions in strings, we can now call the grantPer-
missions(packagename, permissions) function, to grant the permissions to the app specified
by the package name.

Every app now has the permissions that it requires.

46

C The 500 installed apps

Top 500 most downloaded apps worldwide (on 13 September 2022 [44])
Rank App title Package name
1 Candy Crush Jelly Saga com.king.candycrushjellysaga
2 Sticker.ly - Sticker Maker com.snowcorp.stickerly.android
3 Club Factory - Online Shopping App club.fromfactory
4 BYJU’S – The Learning App com.byjus.thelearningapp
5 Chess com.jetstartgames.chess
6 Asphalt Nitro com.gameloft.android.ANMP.GloftAGHM
7 Modern Strike Online: PvP FPS com.gamedevltd.modernstrike
8 Fast Racing 3D com.julian.fastracing
9 Car Parking Multiplayer com.olzhas.carparking.multyplayer
10 Dumb Ways to Die 2: The Games air.au.com.metro.DumbWaysToDie2
11 Alibaba.com - B2B marketplace com.alibaba.intl.android.apps.poseidon
12 Zombie Catchers-Undead Shooter fi.twomenandadog.zombiecatchers
13 Geometry Dash Meltdown com.robtopx.geometrydashmeltdown
14 Paper.io 2 io.voodoo.paper2
15 Photoshop Express Photo Editor com.adobe.psmobile
16 Kaspersky Security & VPN com.kms.free
17 Tomb of the Mask com.playgendary.tom
18 Disney+ com.disney.disneyplus
19 Earn to Die 2 com.notdoppler.earntodie2
20 One Booster: Antivirus&Cleaner com.cleanteam.oneboost
21 Glow Hockey com.natenai.glowhockey
22 Azar - video chat & livestream com.azarlive.android
23 Muslim Pro: Quran Athan Prayer com.bitsmedia.android.muslimpro
24 Mail.ru - Email App ru.mail.mailapp
25 QR & Barcode Scanner com.gamma.scan
26 Talking Ginger com.outfit7.talkinggingerfree
27 Talking Ben the Dog com.outfit7.talkingben
28 Six Pack in 30 Days sixpack.sixpackabs.absworkout
29 Mario Kart Tour com.nintendo.zaka
30 Tank Stars com.playgendary.tanks
31 MP3 Video Converter com.springwalk.mediaconverter
32 Signal Private Messenger org.thoughtcrime.securesms
33 Bubble Shooter bubbleshooter.orig
34 Words of Wonders: Crossword com.fugo.wow
35 "Emoji keyboard-Themes,Fonts" com.emoji.coolkeyboard
36 YouCam Perfect - Photo Editor com.cyberlink.youperfect
37 Collage Maker | Photo Editor photoeditor.layout.collagemaker
38 LINE Let’s Get Rich com.linecorp.LGGRTHN
39 Parchisi STAR Online com.superking.parchisi.star
40 ibis Paint X jp.ne.ibis.ibispaintx.app
41 VN Video Editor Maker VlogNow com.frontrow.vlog
42 Photo Editor Picsa: Collage com.lyrebirdstudio.montagenscolagem
43 "Nubank: conta, cartão e mais" com.nu.production
44 Hungry Shark World com.ubisoft.hungrysharkworld
45 Talking Angela com.outfit7.talkingangelafree
46 Higgs Domino Island com.neptune.domino
47 "Adobe Scan: PDF Scanner, OCR" com.adobe.scan.android
48 Brainly – Get Homework Answers co.brainly

Continued on next page...

47

Rank App title Package name
49 Matchington Mansion com.matchington.mansion
50 Palco MP3: Listen and download com.studiosol.palcomp3
51 Yandex Browser with Protect com.yandex.browser
52 Train Status Ticket Book PNR com.ixigo.train.ixitrain
53 Where’s My Water? 2 com.disney.wheresmywater2_goo
54 Bus Simulator : Ultimate com.zuuks.bus.simulator.ultimate
55 Stick War: Legacy com.maxgames.stickwarlegacy
56 MyFitnessPal: Calorie Counter com.myfitnesspal.android
57 Snapdeal: Online Shopping App com.snapdeal.main
58 Remini - AI Photo Enhancer com.bigwinepot.nwdn.international
59 DEAD TARGET: Zombie Games 3D com.vng.g6.a.zombie
60 YouTube Kids com.google.android.apps.youtube.kids
61 Head Ball 2 - Online Soccer com.masomo.headball2
62 BOOYAH! com.mambet.tv
63 "GuitarTuna: Guitar,Tuner,Chord" com.ovelin.guitartuna
64 "TuneIn Radio: News, Music & FM" tunein.player
65 Tiles Hop: EDM Rush! com.amanotes.beathopper
66 "Dailyhunt: News, Video,Cricket" com.eterno
67 Join Clash 3D com.freeplay.runandfight
68 GO Keyboard Lite - Many Theme com.jb.gokeyboard
69 Amazon Kindle com.amazon.kindle
70 YouCam Makeup - Selfie Editor com.cyberlink.youcammakeup
71 MARVEL Future Fight com.netmarble.mherosgb
72 Sweet Selfie: Camera & Editor com.cam001.selfie
73 Meesho: Online Shopping App com.meesho.supply
74 GUNSHIP BATTLE: Helicopter 3D com.theonegames.gunshipbattle
75 Meta Business Suite com.facebook.pages.app
76 MORTAL KOMBAT: A Fighting Game com.wb.goog.mkx
77 JioTV com.jio.jioplay.tv
78 AJIO - House Of Brands com.ril.ajio
79 Banco do Brasil br.com.bb.android
80 World Soccer League com.touchtao.soccerkinggoogle
81 Galaxy Attack: Alien Shooting com.alien.shooter.galaxy.attack
82 Getcontact app.source.getcontact
83 Cooking Madness -A Chef’s Game com.biglime.cookingmadness
84 Cut the Rope 2 com.zeptolab.ctr2.f2p.google
85 Beach Buggy Racing com.vectorunit.purple.googleplay
86 "Voot, Bigg Boss, Colors TV" com.tv.v18.viola
87 CCleaner – Phone Cleaner com.piriform.ccleaner
88 Pixel Art - color by number com.europosit.pixelcoloring
89 Music Player & MP3 Player musicplayer.musicapps.music.mp3player
90 Cut the Rope com.zeptolab.ctr.ads
91 AccuWeather: Weather Radar com.accuweather.android
92 WiFi Passwords: Instabridge com.instabridge.android
93 "ZEPETO: 3D avatar, chat & meet" me.zepeto.main
94 Hike News & Content com.bsb.hike
95 My Cafe — Restaurant Game com.melesta.coffeeshop
96 Tinder: Dating app. Meet. Chat com.tinder
97 Stumble Guys com.kitkagames.fallbuddies
98 Fun Race 3D com.slippy.linerusher
99 Amazon Prime Video com.amazon.avod.thirdpartyclient
100 Reddit com.reddit.frontpage

Continued on next page...

48

Rank App title Package name
101 SuperVPN Fast VPN Client com.jrzheng.supervpnfree
102 Bike Race: Motorcycle Games com.topfreegames.bikeracefreeworld
103 OLX: Buy & Sell Near You with Online Classifieds com.olx.southasia
104 ": , , " com.avito.android
105 Google Earth com.google.earth
106 Happy Color® – Color by Number com.pixel.art.coloring.color.number
107 Deezer: Music & Podcast Player deezer.android.app
108 Craftsman: Building Craft com.craftsman.go
109 Kiloblocks Lite com.explorationbase.ExplorationLite
110 Marvel Contest of Champions com.kabam.marvelbattle
111 ColorNote Notepad Notes com.socialnmobile.dictapps.notepad.color.note
112 Hunter Assassin com.rubygames.assassin
113 Automatic Call Recorder com.appstar.callrecorder
114 Block Craft 3D: Building Game com.fungames.blockcraft
115 Kik — Messaging & Chat App kik.android
116 Zepp Life(MiFit) com.xiaomi.hm.health
117 Flight Pilot: 3D Simulator com.fungames.flightpilot
118 NBA LIVE Mobile Basketball com.ea.gp.nbamobile
119 The Weather Channel - Radar com.weather.Weather
120 Battlegrounds Mobile India com.pubg.imobile
121 My Talking Tom Friends com.outfit7.mytalkingtomfriends
122 "Ola, Safe and affordable rides" com.olacabs.customer
123 foodpanda: Food & Groceries com.global.foodpanda.android
124 Cover Fire: Offline Shooting com.generagames.resistance
125 OK: Social Network ru.ok.android
126 Bubble Witch 3 Saga com.king.bubblewitch3
127 Pandora - Music & Podcasts com.pandora.android
128 Music Player &MP3- Lark Player com.dywx.larkplayer
129 Modern Combat 5: mobile FPS com.gameloft.android.ANMP.GloftM5HM
130 Joom. Shopping for every day com.joom
131 Angry Birds Go! com.rovio.angrybirdsgo

132 Live Transcribe & Notification com.google.audio.hearing. ...
...visualization.accessibility.scribe

133 SimCity BuildIt com.ea.game.simcitymobile_row
134 Zalo com.zing.zalo
135 Parallel Space - Multiple accounts & Two face com.lbe.parallel.intl
136 Shopee: Compre de Tudo Online com.shopee.br
137 YouCut - Video Editor & Maker com.camerasideas.trimmer
138 Bubble Witch 2 Saga com.midasplayer.apps.bubblewitchsaga2
139 Pet Rescue Saga com.king.petrescuesaga
140 APUS Launcher: Theme Launcher com.apusapps.launcher
141 Plants vs. Zombies™ com.ea.game.pvzfree_row
142 Tiny Flashlight + LED com.devuni.flashlight
143 Shadow Fight 3 - RPG fighting com.nekki.shadowfight3
144 Flipboard: The Social Magazine flipboard.app
145 Photo Lab Picture Editor & Art vsin.t16_funny_photo
146 Top Eleven Be a Soccer Manager eu.nordeus.topeleven.android
147 YouVersion Bible App + Audio com.sirma.mobile.bible.android
148 "WPS Office-PDF,Word,Excel,PPT" cn.wps.moffice_eng
149 Microsoft Teams com.microsoft.teams
150 Dragon Mania Legends com.gameloft.android.ANMP.GloftDOHM
151 Criminal Case com.prettysimple.criminalcaseandroid

Continued on next page...

49

Rank App title Package name
152 Mini World: CREATA com.playmini.miniworld
153 Wattpad - Read & Write Stories wp.wattpad
154 Zombie Tsunami net.mobigame.zombietsunami
155 Secure Folder com.samsung.knox.securefolder
156 Hill Climb Racing 2 com.fingersoft.hcr2
157 Where is my Train com.whereismytrain.android
158 Akinator com.digidust.elokence.akinator.freemium
159 Toca Life World com.tocaboca.tocalifeworld
160 Plague Inc. com.miniclip.plagueinc
161 Storage Saver com.samsung.memorysaver
162 "PayPal - Send, Shop, Manage" com.paypal.android.p2pmobile
163 Mini Militia - Doodle Army 2 com.appsomniacs.da2
164 "Discord: Talk, Chat & Hang Out" com.discord
165 "Nox Cleaner - Booster, Master" com.noxgroup.app.cleaner
166 PUBG MOBILE LITE com.tencent.iglite
167 StarMaker: Sing and Play com.starmakerinteractive.starmaker
168 Uber - Driver: Drive & Deliver com.ubercab.driver
169 FastVid: Video Downloader for Facebook fb.video.downloader
170 WEBTOON com.naver.linewebtoon
171 Sonic Dash - Endless Running com.sega.sonicdash
172 Garena Liên Quân Mobile com.garena.game.kgvn
173 Xender - Share Music Transfer cn.xender
174 Football Strike: Online Soccer com.miniclip.footballstrike
175 Magic Tiles 3 com.youmusic.magictiles
176 HP Print Service Plugin com.hp.android.printservice
177 Cymera - Photo Editor Collage com.cyworld.camera
178 App Vault com.mi.android.globalminusscreen
179 JOOX Music com.tencent.ibg.joox
180 Mobizen Screen Recorder com.rsupport.mvagent
181 ShareChat - Made in India in.mohalla.sharechat
182 inDriver — Offer your fare sinet.startup.inDriver
183 Red Ball 4 com.FDGEntertainment.redball4.gp
184 Worms Zone .io - Hungry Snake com.wildspike.wormszone
185 Backgrounds HD (Wallpapers) com.ogqcorp.bgh
186 Avakin Life - 3D Virtual World com.lockwoodpublishing.avakinlife
187 Google Classroom com.google.android.apps.classroom
188 ZEDGE™ Wallpapers & Ringtones net.zedge.android
189 eBay: The shopping marketplace com.ebay.mobile
190 Themes com.huawei.android.thememanager
191 "GO SMS Pro - Messenger, Free Themes, Emoji" com.jb.gosms
192 Samsung Cloud com.samsung.android.scloud
193 Twitch: Live Game Streaming tv.twitch.android.app
194 Gangstar Vegas: World of Crime com.gameloft.android.ANMP.GloftGGHM
195 War Robots Multiplayer Battles com.pixonic.wwr
196 1945 Air Force: Airplane games com.os.airforce
197 Among Us com.innersloth.spacemafia
198 Fishdom com.playrix.fishdomdd.gplay
199 DEER HUNTER CLASSIC com.glu.deerhunt2
200 Crossy Road com.yodo1.crossyroad
201 WhatsApp Wallpaper com.whatsapp.wallpaper
202 PLAYit-All in One Video Player com.playit.videoplayer
203 "Google Go: A lighter, faster way to search" com.google.android.apps.searchlite

Continued on next page...

50

Rank App title Package name
204 "Amazon India Shop, Pay, miniTV" in.amazon.mShop.android.shopping
205 Traffic Racer com.skgames.trafficracer
206 Uber Eats: Food Delivery com.ubercab.eats
207 Camera360 :Photo Editor&Selfie vStudio.Android.Camera360
208 Indeed Job Search com.indeed.android.jobsearch
209 Home Workout - No Equipment homeworkout.homeworkouts.noequipment
210 Talking Tom Cat 2 com.outfit7.talkingtom2free
211 Lazada 9.9! com.lazada.android
212 Video Editor & Maker VideoShow com.xvideostudio.videoeditor
213 Swiggy Food & Grocery Delivery in.swiggy.android
214 Smart diagnosis com.huawei.hwdetectrepair
215 Mercado Libre: Compras Online com.mercadolibre
216 Dream League Soccer 2022 com.firsttouchgames.dls7
217 Photomath com.microblink.photomath
218 Drag Racing com.creativemobile.DragRacing
219 Swamp Attack com.outfit7.movingeye.swampattack
220 SHEIN-Fashion Shopping Online com.zzkko
221 tango-Live Stream & Video Chat com.sgiggle.production
222 Group Sharing com.samsung.android.mobileservice
223 Opera Browser: Fast & Private com.opera.browser
224 CSR 2 - Drag Racing Car Games com.naturalmotion.customstreetracer2
225 Uber - Request a ride com.ubercab
226 Amazon Music: Discover Songs com.amazon.mp3
227 Resso Music - Songs & Lyrics com.moonvideo.android.resso
228 Kick the Buddy com.playgendary.kickthebuddy
229 Phoenix Browser - Fast & Safe com.transsion.phoenix
230 Pokémon GO com.nianticlabs.pokemongo
231 eFootball™ 2023 jp.konami.pesam
232 Episode - Choose Your Story com.episodeinteractive.android.catalog
233 Bitmoji com.bitstrips.imoji
234 Minecraft Trial com.mojang.minecrafttrialpe
235 Pooking - Billiards City com.billiards.city.pool.nation.club
236 Gardenscapes com.playrix.gardenscapes
237 Helix Jump com.h8games.helixjump
238 SimSimi com.ismaker.android.simsimi
239 CAIXA br.com.gabba.Caixa
240 Brain Out: Can you pass it? com.mind.quiz.brain.out
241 JioSaavn - Music & Podcasts com.jio.media.jiobeats
242 Trivia Crack com.etermax.preguntados.lite
243 Dr. Driving com.ansangha.drdriving
244 "Vi: Recharge, Music, Games, TV" com.mventus.selfcare.activity
245 Photo Editor Pro - Polish photo.editor.photoeditor.photoeditorpro
246 Samsung Link (Terminated) com.sec.pcw
247 Last Day on Earth: Survival zombie.survival.craft.z
248 CapCut - Video Editor com.lemon.lvoverseas
249 The Sims™ FreePlay com.ea.games.simsfreeplay_row
250 Samsung Music com.sec.android.app.music
251 Coin Master com.moonactive.coinmaster
252 Google Sheets com.google.android.apps.docs.editors.sheets
253 Samsung Members com.samsung.android.voc
254 Google Keep - Notes and Lists com.google.android.keep
255 Brawl Stars com.supercell.brawlstars

Continued on next page...

51

Rank App title Package name
256 The Simpsons™: Tapped Out com.ea.game.simpsons4_row
257 MX Player com.mxtech.videoplayer.ad
258 CAIXA Tem br.gov.caixa.tem
259 Google Translate com.google.android.apps.translate
260 Adobe Acrobat Reader: Edit PDF com.adobe.reader
261 Temple Run com.imangi.templerun
262 Microsoft Word: Edit Documents com.microsoft.office.word
263 Clock com.google.android.deskclock
264 Google Calendar com.google.android.calendar
265 Samsung Security Policy Update com.policydm
266 Bigo Live - Live Streaming App sg.bigo.live
267 Gmail Go com.google.android.gm.lite
268 myIM3: Data Plan & Buy Package com.pure.indosat.care
269 Airtel Thanks – Recharge & UPI com.myairtelapp
270 Microsoft SwiftKey Keyboard com.touchtype.swiftkey
271 "Canva: Design, Photo & Video" com.canva.editor
272 Google Assistant Go com.google.android.apps.assistant
273 Samsung One UI Home com.sec.android.app.launcher
274 Microsoft Outlook com.microsoft.office.outlook
275 B612 Camera&Photo/Video Editor com.linecorp.b612.android
276 Yandex Go — taxi and delivery ru.yandex.taxi
277 WiFi Master: WiFi Auto Connect com.halo.wifikey.wifilocating
278 Navigation for Google Maps Go com.google.android.apps.navlite
279 Banana Kong com.fdgentertainment.bananakong
280 Avast Antivirus & Security com.avast.android.mobilesecurity
281 Samsung Calculator com.sec.android.app.popupcalculator
282 Paytm: Secure UPI Payments net.one97.paytm
283 AVG AntiVirus & Security com.antivirus
284 Hungry Shark Evolution com.fgol.HungrySharkEvolution
285 Brain Test: Tricky Puzzles com.unicostudio.braintest
286 Google Meet (original) com.google.android.apps.meetings
287 Google Play Games com.google.android.play.games
288 Twitter com.twitter.android
289 Google Docs com.google.android.apps.docs.editors.docs
290 UC Mini-Download Video Status & Movies com.uc.browser.en
291 SnackVideo com.kwai.bulldog
292 Mi Calendar com.xiaomi.calendar
293 MyTelkomsel - Buy Package com.telkomsel.telkomselcm
294 PK XD - Explore Universes! com.movile.playkids.pkxd
295 Samsung Push Service com.sec.spp.push
296 FIFA Soccer com.ea.gp.fifamobile
297 Shadow Fight 2 com.nekki.shadowfight
298 Google Maps Go com.google.android.apps.mapslite
299 Clash of Clans com.supercell.clashofclans
300 Briefing flipboard.boxer.app
301 "Tumblr—Fandom, Art, Chaos" com.tumblr
302 Weather - By Xiaomi com.miui.weather2
303 Dropbox: Secure Cloud Storage com.dropbox.android
304 World of Tanks Blitz - PVP MMO net.wargaming.wot.blitz
305 Google Play Services for AR com.google.ar.core
306 slither.io air.com.hypah.io.slither
307 Google One com.google.android.apps.subscriptions.red

Continued on next page...

52

Rank App title Package name
308 Farm Heroes Saga com.king.farmheroessaga
309 Telegram org.telegram.messenger
310 Speech Services by Google com.google.android.tts
311 Google Play Books & Audiobooks com.google.android.apps.books
312 Screen Recorder - XRecorder videoeditor.videorecorder.screenrecorder
313 Waze Navigation & Live Traffic com.waze
314 Microsoft PowerPoint com.microsoft.office.powerpoint
315 Badoo - Dating. Chat. Meet. com.badoo.mobile
316 CamScanner - PDF Scanner App com.intsig.camscanner
317 FaceApp: Face Editor io.faceapp
318 WhatsApp Messenger com.whatsapp
319 Tokopedia com.tokopedia.tkpd
320 Grab Superapp com.grabtaxi.passenger
321 Google Play services com.google.android.gms
322 Spotify: Music and Podcasts com.spotify.music
323 Pou me.pou.app
324 LINE: Calls & Messages jp.naver.line.android
325 Real Racing 3 com.ea.games.r3_row
326 Myntra - Fashion Shopping App com.myntra.android
327 Standoff 2 com.axlebolt.standoff2
328 ShareMe: File sharing com.xiaomi.midrop
329 Need for Speed™ No Limits com.ea.game.nfs14_row
330 SmartThings com.samsung.android.oneconnect
331 TikTok com.ss.android.ugc.trill
332 Wish: Shop And Save com.contextlogic.wish
333 My Talking Tom com.outfit7.mytalkingtomfree
334 "VK: music, video, messenger" com.vkontakte.android
335 Candy Camera - photo editor com.joeware.android.gpulumera
336 Talking Tom Gold Run com.outfit7.talkingtomgoldrun
337 Calculator com.google.android.calculator
338 Wynk Music -Songs & HelloTunes com.bsbportal.music
339 Turbo VPN - Secure VPN Proxy free.vpn.unblock.proxy.turbovpn
340 "Solo Launcher-Clean,Smooth,DIY" home.solo.launcher.free
341 Samsung Notes com.samsung.android.app.notes
342 Shopee 9.9 Super Shopping Day com.shopee.id
343 Files by Google com.google.android.apps.nbu.files
344 Special Forces Group 2 com.ForgeGames.SpecialForcesGroup2
345 Google Assistant com.google.android.apps.googleassistant
346 Cooking Fever: Restaurant Game com.nordcurrent.canteenhd
347 Retrica - The Original Filter Camera com.venticake.retrica
348 GO Launcher -Themes&Wallpapers com.gau.go.launcherex
349 Gaana Hindi Song Music App com.gaana
350 Samsung Health com.sec.android.app.shealth
351 Candy Crush Saga com.king.candycrushsaga
352 My Talking Angela com.outfit7.mytalkingangelafree
353 YouTube Music com.google.android.apps.youtube.music
354 My Talking Tom 2 com.outfit7.mytalkingtom2
355 Dragon City Mobile es.socialpoint.DragonCity
356 Temple Run 2 com.imangi.templerun2
357 Link to Windows com.microsoft.appmanager
358 imo-International Calls & Chat com.imo.android.imoim
359 Duolingo: language lessons com.duolingo

Continued on next page...

53

Rank App title Package name
360 HiCare com.huawei.phoneservice
361 Zomato: Food Delivery & Dining com.application.zomato
362 Samsung My Files com.sec.android.app.myfiles
363 Wallpapers com.google.android.apps.wallpaper
364 Hay Day com.supercell.hayday
365 Microsoft OneDrive com.microsoft.skydrive
366 TikTok Lite com.zhiliaoapp.musically.go
367 Video Editor & Maker - InShot com.camerasideas.instashot
368 Smule: Karaoke Songs & Videos com.smule.singandroid
369 Motorola Notifications com.motorola.ccc.notification
370 Skype com.skype.raider
371 Android Accessibility Suite com.google.android.marvin.talkback
372 Android Auto com.google.android.projection.gearhead
373 "SHAREit: Transfer, Share Files" com.lenovo.anyshare.gps
374 Garena Free Fire: 5th Anniv. com.dts.freefireth
375 Lords Mobile: Tower Defense com.igg.android.lordsmobile
376 Samsung Voice Recorder com.sec.android.app.voicenote
377 Gmail com.google.android.gm
378 Smash Hit com.mediocre.smashhit
379 8 Ball Pool com.miniclip.eightballpool
380 YouTube Music com.google.android.music
381 Samsung Internet Browser com.sec.android.app.sbrowser
382 Clash Royale com.supercell.clashroyale
383 Picsart Photo & Video Editor com.picsart.studio
384 Google Photos com.google.android.apps.photos
385 Microsoft Excel: Spreadsheets com.microsoft.office.excel
386 Hotstar in.startv.hotstar
387 Phone Master–Junk Clean Master com.transsion.phonemaster
388 Viber - Safe Chats And Calls com.viber.voip
389 Google Drive com.google.android.apps.docs
390 Minion Rush: Running Game com.gameloft.android.ANMP.GloftDMHM
391 Mobile Legends: Bang Bang com.mobile.legends
392 MyJio: For Everything Jio com.jio.myjio
393 WeChat com.tencent.mm
394 Google Duo com.google.android.apps.tachyon
395 "UC Browser-Safe, Fast, Private" com.UCMobile.intl
396 Mi Video - Video player com.miui.videoplayer
397 Ultra data saving com.samsung.android.uds
398 dfndr security: antivirus com.psafe.msuite
399 Castle Clash: World Ruler com.igg.castleclash
400 Pixel Gun 3D - FPS Shooter com.pixel.gun3d
401 "Safe Security - Antivirus, Booster, Phone Cleaner" com.qihoo.security
402 Subway Surfers com.kiloo.subwaysurf
403 "PhonePe UPI, Payment, Recharge" com.phonepe.app
404 Plants vs Zombies™ 2 com.ea.game.pvz2_row
405 Netflix com.netflix.mediaclient
406 TikTok com.zhiliaoapp.musically
407 WhatsApp Business com.whatsapp.w4b
408 LinkedIn: Jobs & Business News com.linkedin.android
409 Google News - Daily Headlines com.google.android.apps.magazines
410 ZOOM Cloud Meetings us.zoom.videomeetings
411 Google com.google.android.googlequicksearchbox

Continued on next page...

54

Rank App title Package name
412 Candy Crush Soda Saga com.king.candycrushsodasaga
413 Jetpack Joyride com.halfbrick.jetpackjoyride
414 Galaxy Wearable (Samsung Gear) com.samsung.android.app.watchmanager
415 Facebook Lite com.facebook.lite
416 Likee - Community of Interests video.like
417 Firefox Fast & Private Browser org.mozilla.firefox
418 HUAWEI Video com.huawei.himovie.overseas
419 KineMaster - Video Editor com.nexstreaming.app.kinemasterfree
420 Agar.io com.miniclip.agar.io
421 Vector: Parkour Run com.nekki.vector
422 Calculator com.miui.calculator
423 Booking.com: Hotels and more com.booking
424 Currents com.google.android.apps.plus
425 Samsung Email com.samsung.android.email.provider
426 Township com.playrix.township
427 Sniper 3D: Gun Shooting Games com.fungames.sniper3d
428 Google Chrome: Fast & Secure com.android.chrome
429 ANT Radio Service com.dsi.ant.service.socket
430 Huawei Health com.huawei.health
431 Amazon Shopping com.amazon.mShop.android.shopping
432 Opera Mini: Fast Web Browser com.opera.mini.native
433 Asphalt 8 - Car Racing Game com.gameloft.android.ANMP.GloftA8HM
434 Roblox com.roblox.client
435 Granny com.dvloper.granny
436 Google Wallet com.google.android.apps.walletnfcrel
437 Carrom Pool: Disc Game com.miniclip.carrom
438 Boom Beach com.supercell.boombeach
439 "BeautyPlus - Retouch, Filters" com.commsource.beautyplus
440 Traffic Rider com.skgames.trafficrider
441 Mercado Pago: cuenta digital com.mercadopago.wallet
442 Device Help com.motorola.genie
443 Phone Clone com.hicloud.android.clone
444 File Manager : free and easily com.mi.android.globalFileexplorer
445 Facebook com.facebook.katana
446 Instagram com.instagram.android
447 Carrier Services com.google.android.ims
448 Gojek com.gojek.app
449 Microsoft OneNote: Save Notes com.microsoft.office.onenote
450 ANT+ Plugins Service com.dsi.ant.plugins.antplus
451 Truecaller: Caller ID & Block com.truecaller
452 Yahoo Mail – Organized Email com.yahoo.mobile.client.android.mail
453 "Google Pay: Save, Pay, Manage" com.google.android.apps.nbu.paisa.user
454 Messenger Lite com.facebook.mlite
455 Garena Free Fire MAX com.dts.freefiremax
456 iFood comida e mercado em casa br.com.brainweb.ifood
457 Contacts com.google.android.contacts
458 Idle Miner Tycoon: Gold & Cash com.fluffyfairygames.idleminertycoon
459 Huawei Backup com.huawei.KoBackup
460 Android System WebView com.google.android.webview
461 Google Slides com.google.android.apps.docs.editors.slides
462 Microsoft Office: Edit & Share com.microsoft.office.officehubrow
463 Google TV com.google.android.videos

Continued on next page...

55

Rank App title Package name
464 Extreme Car Driving Simulator com.aim.racing
465 Homescapes com.playrix.homescapes
466 YouTube com.google.android.youtube
467 Snapchat com.snapchat.android
468 Shazam: Music Discovery com.shazam.android
469 KakaoTalk : Messenger com.kakao.talk
470 Kwai - Watch cool&funny videos com.kwai.video
471 Themes com.bbk.theme
472 Google Lens com.google.ar.lens
473 Google Maps com.google.android.apps.maps
474 Call of Duty Mobile Season 7 com.activision.callofduty.shooter
475 µTorrent®- Torrent Downloader com.utorrent.client
476 Pinterest com.pinterest
477 YouTube Go com.google.android.apps.youtube.mango
478 Period Calendar Period Tracker com.popularapp.periodcalendar
479 Geometry Dash Lite com.robtopx.geometryjumplite
480 Hill Climb Racing com.fingersoft.hillclimb
481 Samsung Print Service Plugin com.sec.app.samsungprintservice
482 Ludo King™ com.ludo.king
483 SoundCloud: Play Music & Songs com.soundcloud.android
484 Talking Tom Cat com.outfit7.talkingtom
485 Flipkart Online Shopping App com.flipkart.android
486 Fruit Ninja® com.halfbrick.fruitninjafree
487 AliExpress com.alibaba.aliexpresshd
488 Mi Music com.miui.player
489 Messenger com.facebook.orca
490 VivaVideo - Video Editor&Maker com.quvideo.xiaoying
491 Messages com.google.android.apps.messaging
492 Phone by Google com.google.android.dialer
493 Gboard - the Google Keyboard com.google.android.inputmethod.latin
494 Angry Birds 2 com.rovio.baba
495 Huawei Mobile Services com.huawei.hwid
496 PUBG MOBILE com.tencent.ig
497 Angry Birds Classic com.rovio.angrybirds
498 "Hago- Party, Chat & Games" com.yy.hiyo
499 Google Street View com.google.android.street
500 Device Care com.samsung.android.lool

56

D The profiles
The purpose of this appendix is to disclose profiles that we used. Table 3 shows the apps that
are used in each profile. Each app is represented by a number, which equals its rank in Appendix
C minus 1. For example, the app with index 320 (i.e. rank 321) is the app with package name
"com.google.android.gms" (i.e. "Google Play services"). This app has been added to every profile
to ensure that Google Play services is always enabled. Without Google Play services, some apps do
not work. Apart from Google Play services, every profile contains 50 other, randomly selected apps.
These are the apps that will be enabled when a profile is activated. All of the other apps will then be
disabled.

The randomly generated profiles
Profile App indexes (= rank_number − 1)

0 320,315,147,404,355,286,243,358,77,144,304,161,447,329,410,345,208,287,412,276,461,328,297,472,
16,250,13,128,188,145,73,386,85,248,393,52,278,5,93,359,379,467,468,101,442,446,409,429,136,110,344

1 320,378,250,315,352,369,484,4,307,167,146,134,302,120,177,182,398,423,491,7,197,339,351,57,155,
40,417,427,145,388,455,450,49,449,498,442,135,92,274,207,323,87,411,344,299,164,336,221,111,129,173

2 320,197,355,243,246,3,245,335,300,473,88,328,397,132,29,46,0,406,75,133,73,37,36,383,79,399,278,460,
225,388,407,209,240,344,446,54,292,465,393,85,26,277,374,351,430,19,491,485,331,375,181

3 320,122,324,364,388,62,182,132,468,335,334,48,194,450,5,295,344,38,401,375,74,358,438,86,360,232,
230,134,338,157,186,359,139,425,328,277,101,106,350,57,67,275,486,150,60,70,387,239,406,156,278

4 320,434,425,138,45,220,468,296,476,482,480,439,355,47,433,364,10,313,310,75,42,281,209,240,211,
305,124,122,262,354,40,412,304,390,445,186,311,216,469,185,479,474,66,317,333,427,444,92,401,488,191

5 320,487,479,423,258,451,183,195,475,445,319,141,196,260,221,176,313,211,35,222,40,375,251,97,342,
357,488,394,125,419,421,410,25,85,177,89,135,398,150,483,58,26,477,148,31,397,307,407,367,215,273

6 320, 320,444,195,56,473,445,487,220,133,468,222,146,307,64,332,17,70,347,136,391,84,105,10,50,477,
192,49,103,231,66,326,169,134,380,204,283,262,117,365,180,88,407,28,394,318,335,342,111,427,18

7 320,395,290,200,98,469,308,61,302,251,448,0,65,172,429,38,240,432,31,399,369,418,355,259,338,397,
371,305,27,455,81,273,268,234,382,269,267,387,182,111,53,425,20,45,315,344,143,256,201,191,69

8 320,333,137,430,473,171,485,496,413,220,199,3,85,25,33,170,90,447,412,258,406,182,108,379,443,205,
444,173,308,60,38,215,359,69,465,274,121,310,356,470,46,290,47,222,98,303,489,219,318,70,35

9 320,446,490,106,397,111,491,183,333,456,137,81,180,45,98,136,205,187,144,95,27,470,495,315,388,287,
454,380,228,358,156,238,341,16,186,57,128,419,296,486,23,67,254,46,371,383,360,438,37,24,412

10 320,156,118,348,84,461,35,225,121,209,386,429,120,242,309,398,232,206,87,436,89,301,393,9,303,484,
311,426,308,294,473,298,390,12,438,291,247,191,279,205,119,33,11,14,81,478,281,109,403,15,302

11 320,243,333,53,459,37,280,69,274,409,429,161,22,75,63,95,416,183,155,141,422,41,11,176,129,68,403,
376,286,283,207,453,32,39,317,138,214,472,187,2,445,397,119,400,5,251,257,281,288,230,185

12 320,138,287,186,72,275,418,465,425,417,241,426,61,286,69,246,362,311,420,398,68,198,448,36,45,227,
442,41,232,129,12,114,349,379,207,278,32,429,144,365,28,487,480,279,222,452,297,310,329,50,188

13 320,101,10,45,128,365,364,42,257,325,380,20,262,465,162,43,158,297,184,65,104,293,12,452,390,206,
423,443,118,412,153,313,70,445,15,360,106,407,3,449,419,122,69,31,198,167,202,141,362,367,345

14 320,88,427,147,311,83,286,47,463,292,269,295,491,351,314,187,460,11,138,196,337,418,285,181,278,
62,166,32,152,324,168,274,139,157,232,357,28,4,261,266,459,235,43,474,184,50,10,159,116,52,382

15 320,212,341,426,202,258,115,388,402,239,45,93,375,185,251,379,268,43,47,75,316,378,100,170,248,
4,468,116,333,3,397,149,452,176,315,465,60,334,451,90,76,56,483,178,429,61, 320,159,196,238,329

16 320,188,253,78,214,191,108,438,451,174,20,239,121,99,439,413,444,35,456,30,198,419,373,11,16,466,
259,288,449, 320,268,443,465,445,147,195,9,182,197,51,66,100,448,193,127,498,109,85,53,70,482

17 320,242,470,279,114,431,275,209,179,300,317,210,90,442,388,253,78,307,162,24,350,310,27,474,182,193,
161,211,224,270,163,445,70,105,246,216,397,251,2,359,77,496,404,436,168,378,437,232,121,145,41

18 320,227,38,387,164,421,437,373,77,298,296,1,267,5,280,426,269,234,461,479,86,110,48,31,378,449,423,
304,16,315,300,389,124,410,55,13,420,51,40,143,220,250,106,455,282,299,273,182,73,161,99

19 320,1,448,288,473,202,338,192,47,479,38,486,308,399,241,232,163,247,351,10,286,81,487,319,250,37,
118,471,16,303,164,184,242,229,251,263,282,289,236,480,76,70,238,231,181,198,477,239,330,78,31

Table 3: The list of activated apps in each profile

57

E Results in table format
The tables below show the exact number of correct classifications for each time interval, for the different
distance metrics that we used. In other words, each number denotes for how many out of the 200 pcap
files we were able to correctly classify the profile that was activated when the data was recorded. A
score of 200 correct classifications means a success rate of 100%, since we have a total of 200 PCAP
files. The first column of each table denotes a time interval in seconds. The other columns are the
different distance metrics.

Performance comparison of distance metrics with 60 minutes of data
Time (s) dice jaccard kulsinski matching rogerstanimoto russellrao sokalmichener sokalsneath
0-3600 200 200 200 197 197 200 197 200

Performance comparison of distance metrics with 30 minutes of data
Time (s) dice jaccard kulsinski matching rogerstanimoto russellrao sokalmichener sokalsneath
0-1800 200 200 200 198 198 200 198 200
1800-3600 155 167 199 168 168 196 168 176

Performance comparison of distance metrics with 20 minutes of data
Time (s) dice jaccard kulsinski matching rogerstanimoto russellrao sokalmichener sokalsneath
0-1200 200 200 200 199 200 200 200 200
1200-2400 173 174 200 166 167 200 167 180
2400-3600 159 169 198 164 164 196 164 174

Performance comparison of distance metrics with 10 minutes of data
Time (s) dice jaccard kulsinski matching rogerstanimoto russellrao sokalmichener sokalsneath
0-600 200 200 200 199 199 200 199 200
600-1200 178 181 200 175 175 200 175 187
1200-1800 167 169 200 160 161 200 161 173
1800-2400 149 157 200 160 162 198 162 167
2400-3000 148 154 199 150 150 197 150 164
3000-3600 162 171 200 163 164 198 164 172

Performance comparison of distance metrics with 5 minutes of data
Time (s) dice jaccard kulsinski matching rogerstanimoto russellrao sokalmichener sokalsneath
0-300 200 200 200 198 199 200 199 200
300-600 191 193 200 192 192 200 192 198
600-900 188 190 200 179 179 200 179 193
900-1200 178 184 200 171 173 200 173 188
1200-1500 165 167 200 155 160 200 160 171
1500-1800 138 152 197 149 149 196 149 163
1800-2100 153 161 199 161 162 198 162 173
2100-2400 140 150 198 145 148 197 148 160
2400-2700 149 157 198 148 150 198 150 164
2700-3000 144 153 200 141 143 200 143 159
3000-3300 153 162 196 150 153 196 153 166
3300-3600 156 165 198 146 150 198 150 171

58

Performance comparison of distance metrics with 1 minute of data
Time (s) dice jaccard kulsinski matching rogerstanimoto russellrao sokalmichener sokalsneath
0-60 179 186 192 181 182 192 182 187
60-120 183 191 197 183 185 197 185 193
120-180 180 189 200 179 180 200 180 193
180-240 175 182 199 171 172 199 172 187
240-300 146 153 192 139 141 192 141 161
300-360 186 190 198 185 185 198 185 193
360-420 162 165 197 144 148 197 148 175
420-480 146 154 191 140 145 191 145 160
480-540 152 160 192 143 144 192 144 166
540-600 137 144 178 144 145 178 145 154
600-660 156 163 190 148 149 190 149 171
660-720 144 152 188 132 133 188 133 161
720-780 133 139 181 129 133 181 133 149
780-840 157 164 184 154 155 184 155 168
840-900 144 147 195 137 138 195 138 155
900-960 158 165 190 148 151 190 151 171
960-1020 148 148 183 141 143 183 143 154
1020-1080 138 145 183 138 142 183 142 153
1080-1140 154 160 180 145 147 180 147 162
1140-1200 118 125 172 116 121 172 121 135
1200-1260 137 142 181 127 130 181 130 157
1260-1320 128 133 174 118 119 174 119 145
1320-1380 103 113 158 100 103 158 103 127
1380-1440 115 120 156 108 109 156 109 132
1440-1500 96 102 153 106 109 153 109 111
1500-1560 93 113 162 103 113 162 113 119
1560-1620 99 104 156 102 103 156 103 113
1620-1680 100 104 149 90 93 149 93 114
1680-1740 123 136 175 106 107 175 107 140
1740-1800 108 121 165 117 120 164 120 133
1800-1860 132 140 185 135 135 184 135 150
1860-1920 126 132 172 117 122 172 122 142
1920-1980 114 129 160 100 104 160 104 134
1980-2040 114 117 158 106 107 158 107 127
2040-2100 119 120 171 112 113 171 113 127
2100-2160 111 113 163 106 108 163 108 123
2160-2220 109 118 167 104 111 167 111 124
2220-2280 100 115 157 100 107 157 107 122
2280-2340 103 107 147 102 104 147 104 113
2340-2400 100 104 156 114 114 154 114 119
2400-2460 119 127 164 125 130 164 130 137
2460-2520 112 120 166 117 117 166 117 129
2520-2580 104 115 164 101 101 164 101 124
2580-2640 119 123 155 105 107 155 107 128
2640-2700 119 125 165 114 117 165 117 131
2700-2760 108 109 159 102 103 159 103 122
2760-2820 106 114 162 108 114 162 114 126
2820-2880 112 119 162 105 108 162 108 125
2880-2940 112 115 163 102 103 163 103 122
2940-3000 107 112 160 113 116 160 116 124
3000-3060 120 136 168 125 125 168 125 141

Continued on next page...

59

Time (s) dice jaccard kulsinski matching rogerstanimoto russellrao sokalmichener sokalsneath
3060-3120 110 117 165 102 110 165 110 129
3120-3180 98 103 142 101 101 142 101 112
3180-3240 108 113 147 107 111 147 111 120
3240-3300 106 114 151 106 109 151 109 117
3300-3360 103 108 146 102 104 146 104 112
3360-3420 98 104 159 97 98 159 98 114
3420-3480 88 98 149 93 99 149 99 115
3480-3540 120 127 172 110 115 172 115 136
3540-3600 109 121 165 118 119 165 119 133

60

	Introduction
	Attack scenario
	Related work
	Preparing the setup
	Installing a programmable SIM card
	Creating an LTE network
	Installing UHD
	Installing srsRAN
	Managing configuration files

	Running our LTE network
	Connecting the phone to our LTE network
	Simulate multiple users
	Preparing the phone
	Installing the apps
	Enabling and disabling apps
	Profiles

	Account for software or hardware crashes
	Detect a crash using the phone's connection state
	Recover the connection using Airplane mode
	Recover the connection by killing srsRAN
	Maintain the state before killing srsRAN
	Recover the connection by unplugging the SDR
	Killing srsRAN vs. unplugging the SDR
	Automate the above

	Configuring the permissions of the apps
	Other things to account for

	The attack setup
	Diagram of the setup
	Components
	Connections
	Script

	Attack analysis
	The output data of our setup
	Extracting relevant data from the PCAP files
	Looking at data from multiple users simultaneously
	Extracting IP addresses from the PCAP files
	Altering dissectors in Wireshark
	Using TShark to extract IP addresses

	Converting IP addresses to AS numbers (ASNs)
	Convert ASNs to Boolean vectors
	Determining the similarity of two PCAP files
	Determining the profile of each PCAP
	General idea
	Example
	In our setup
	Using shorter traces
	Accelerating our analysis

	Overview of the entire analysis

	Results
	File sizes of our recordings
	Using all 60 minutes of data from the PCAPs
	30 minutes of data
	20 minutes of data
	10 minutes of data
	5 minutes of data
	1 minute of data

	Discussion
	Detection of our attack
	Countermeasures
	Other limitations and future research
	5G

	Conclusion
	Code samples for the research setup
	Simplified apps installation script
	Code to verify phone connection status
	Code to end srsRAN

	Setting the app permissions
	The 500 installed apps
	The profiles
	Results in table format

